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Installing GTC


From PyPI

GTC is available as a PyPI package [https://pypi.org/project/GTC/]. It can be installed using pip

pip install gtc





This obtains the most recent stable release of GTC and is the recommended way to install the package.



From the Source Code

GTC is actively developed on GitHub, where the source code [https://github.com/MSLNZ/GTC/] is available.

The easiest way to install GTC with the latest features and updates is to run

pip install https://github.com/MSLNZ/GTC/archive/master.zip





Alternatively, you can either clone the public repository

git clone git://github.com/MSLNZ/GTC.git





or download the tarball [https://github.com/MSLNZ/GTC/archive/master.tar.gz] (Unix) or zipball [https://github.com/MSLNZ/GTC/archive/master.zip] (Windows) and then extract it.

Once you have a copy of the source code, you can install it by running

cd GTC
pip install .







Dependencies


	Python 2.7, 3.5+


	scipy [https://www.scipy.org/]
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The GUM Tree calculator (GTC) is a data processing tool that uses uncertain numbers to represent measured quantities. GTC automates evaluation of uncertainty in derived quantities when they are calculated from measured data.


Measurement error

A measurement obtains information about a quantity, but the quantity itself (the measurand) is never determined exactly. There is always some measurement error involved. This can be expressed as an equation, where the unknown measurand is \(Y\) and the measurement result is \(y\), we have


\[y = Y + E_y\; ,\]

where \(E_y\) is the measurement error. So, the result, \(y\), is only an approximate value for the quantity of interest \(Y\).

This is how ‘uncertainty’ arises. After any measurement, we are faced with uncertainty about what will happen if we take the measured value \(y\) and use it for the (unknown) value  \(Y\).

For example, suppose the speed of a car is measured by a law enforcement officer. The officer needs to decide whether, in fact, a car was travelling faster than the legal limit but this simple fact cannot be determined, because the actual speed \(Y\) remains unknown. The measured value \(y\) might indicate that the car was speeding when in fact it was not, or that it was not speeding when in fact it was. In practice, a decision rule that takes account of the measurement uncertainty must be used. In this example, the rule will probably err on the side of caution (a few speeding drivers will escape rather than unfairly accusing good drivers of speeding).

Like the measurand, the measurement error \(E_y\) will never be known. At best, its behaviour can be described in statistical terms. This leads to technical meanings of the word ‘uncertainty’. For instance, the term ‘standard uncertainty’ refers to the standard deviation of a statistical distribution associated with an unpredictable quantity.


Measurement models

A measurement error comes about because there are unpredictable factors that influence the outcome of a measurement process.
In a formal analysis, these factors must be identified and included in a measurement model, which defines the measurand in terms of all other significant influence quantities. In mathematical terms, we write


\[Y = f(X_1, X_2, \cdots) \;,\]

where the \(X_i\) are influence quantities.

Once again, the actual quantities \(X_1, X_2, \cdots\) are not known; only estimates \(x_1, x_2, \cdots\) are available. These are used to calculate a measured value that is approximately equal to the measurand


\[y = f(x_1, x_2, \cdots) \;.\]




Uncertain Numbers

An uncertain number is a data-type designed to represent a measured quantity. It encapsulates information about the measurement, including the measured value and its uncertainty.

Uncertain numbers are used when processing measurement data; that is, to evaluate measurement models. The inputs to a model (like \(X_1, X_2, \cdots\) above) will be defined as uncertain numbers using measurement data. Calculations then produce an uncertain number for the measurand (\(Y\)).

There are two types of uncertain number: one for real-valued quantities and one for complex-valued quantities. At the very least, two pieces of information are needed to define an uncertain number: a value (that is, a measured, or approximate, value of the quantity) and the uncertainty associated with the error in the measured value.


Uncertain real numbers

The function ureal() is usually the preferred way to define uncertain numbers representing real-valued quantities.


Example: an electrical circuit

Suppose the current flowing in an electrical circuit \(I\) and the voltage across a circuit element \(V\) have been measured.

The measured values are \(x_V = 0.1\, \mathrm{V}\) and \(x_I = 15\,\mathrm{mA}\), with standard uncertainties \(u(x_V) = 1\, \mathrm{mV}\) and \(u(x_I) = 0.5\,\mathrm{mA}\), respectively.

Uncertain numbers for \(V\) and \(I\) are defined by

>>> V = ureal(0.1,1E-3)
>>> I = ureal(15E-3,0.5E-3)





and then the resistance can be calculated directly using Ohm’s law

>>> R = V/I
>>> print(R)
6.67(23)





The measured value of resistance \(x_R = 6.67 \,\Omega\) is an estimate (approximation) for \(R\), the standard uncertainty in \(x_R\) as an estimate of \(R\) is \(0.23 \,\Omega\).



Example: height of a flag pole

Suppose a flag is flying from a pole that is 15 metres away from an observer (with an uncertainty of 3 cm). The angle between horizontal and line-of-sight to the top of the pole is 38 degrees (with an uncertainty of 2 degrees). How high is the top of the pole?

A measurement model should express a relationship between the quantities involved: the height of the pole \(H\), the distance to the base of the pole \(B\) and the line-of-sight angle \(\Phi\),


\[H = B \tan\Phi \;.\]

To calculate the height, we create uncertain numbers representing the measured quantities and use the model

>>> B = ureal(15,3E-2)
>>> Phi = ureal(math.radians(38),math.radians(2))
>>> H = B * tan(Phi)
>>> print(H)
11.72(84)





The result \(x_H = 11.7\) metres is our best estimate of the height \(H\). The standard uncertainty of this value, as an estimate of the actual height, is 0.8 metres.

It is important to note that uncertain-number calculations are open ended. In this case, for example, we can keep going and evaluate what the observer angle would be at 20 metres from the pole (the uncertainty in the base distance remains 3 cm)

>>> B_20 = ureal(20,3E-2)
>>> Phi_20 = atan( H/B_20 )
>>> print(Phi_20)
0.530(31)
>>> Phi_20_deg= Phi_20 * 180./math.pi
>>> print(Phi_20_deg)
30.4(1.8)





The angle of 30.4 degrees at 20 metres from the pole has a standard uncertainty of 1.8 degrees.




Uncertain complex numbers

The function ucomplex() is usually preferred for defining uncertain complex numbers.


Example: AC electric circuit

Suppose measurements have been made of: the alternating current \(i\) flowing in an electrical circuit, the voltage \(v\) across a circuit element and the phase \(\phi\) of the voltage with respect to the current. The measured values are: \(x_v \approx 4.999\, \mathrm{V}\), \(x_i \approx 19.661\,\mathrm{mA}\) and \(x_\phi \approx 1.04446\,\mathrm{rad}\), with standard uncertainties \(u(x_v) = 0.0032\, \mathrm{V}\), \(u(x_i) = 0.0095\,\mathrm{mA}\) and \(u(x_\phi) = 0.00075\,\mathrm{rad}\), respectively.

Uncertain numbers for the quantities \(v\), \(i\) and \(\phi\) can be defined

>>> v = ucomplex(complex(4.999,0),(0.0032,0))
>>> i = ucomplex(complex(19.661E-3,0),(0.0095E-3,0))
>>> phi = ucomplex(complex(0,1.04446),(0,0.00075))





Note, the uncertainty argument is a pair of numbers in these definitions. These are the standard uncertainties associated with measured values of the real and imaginary components.

The complex impedance is

>>> z = v * exp(phi) / i
>>> print(z)
(+127.73(19)+219.85(20)j)





We see that our best estimate of the impedance is the complex value \((127.73 +\mathrm{j}219.85) \,\Omega\). The standard uncertainty in the real component is \(0.19 \,\Omega\) and the standard uncertainty in the imaginary component is \(0.20 \,\Omega\). There is also a small correlation between our estimates of the real and imaginary components

>>> get_correlation(z)
0.0582038103158399...





If a polar representation of the impedance is preferred,

>>> print(magnitude(z))
254.26(20)
>>> print(phase(z))
1.04446(75)








Uncertain Number Attributes

Uncertain number objects have attributes that provide access to: the measured value (the estimate), the uncertainty (of the estimate) and the degrees of freedom (associated with the uncertainty) (see UncertainReal).

Continuing with the flagpole example, the attributes x, u, df obtain the value, the uncertainty and the degrees-of-freedom (which is infinity), respectively

>>> H.x
11.71928439760076...
>>> H.u
0.84353295110757...
>>> H.df
inf





Alternatively, there are functions that return the same attributes

>>> value(H)
11.71928439760076...
>>> uncertainty(H)
0.84353295110757...
>>> dof(H)
inf







Uncertain numbers and measurement errors

It is often is helpful to to formulate measurement models that explicitly acknowledge measurement errors. As we said above, these errors are not known exactly; many will be residual quantities with estimates of zero or unity. However, errors have a physical meaning and it is often useful to identify them in the model.

In the example above, errors associated with measured values of \(B\) and \(\Phi\) were not identified but we can do so now by introducing the terms \(E_b\) and \(E_\phi\). The measured values \(b=15\,\mathrm{m}\) and \(\phi=38 \, \mathrm{deg}\) are related to the quantities of interest as


\[ \begin{align}\begin{aligned}B = b - E_b\\\Phi = \phi - E_\phi\end{aligned}\end{align} \]

Our best estimates of these errors are trivial, \(E_b \approx 0\) and \(E_\phi \approx 0\), but the actual values are unpredictable and give rise to uncertainty in the height of the pole. It is appropriate to attribute the standard uncertainties \(u(E_b)=3\times 10^{2}\, \mathrm{m}\) and  \(u(E_\phi)=2\, \mathrm{deg}\) to measurement errors, rather than associate uncertainty with the fixed quantities \(B\) and \(\Phi\).

The calculation becomes

>>> B = 15 - ureal(0,3E-2,label='E_b')
>>> Phi = math.radians(38) - ureal(0,math.radians(2),label='E_phi')
>>> H = B*tan(Phi)
>>> print(H)
11.72(84)





This reflects our understanding of the problem better: the numbers \(b=15\) and \(\phi=38\) are known, there is nothing ‘uncertain’ about their values. What is uncertain are the unknown measurement errors \(E_b\) and \(E_\phi\).

When defining uncertain numbers, setting labels allows an uncertainty budget to be displayed later (see budget()). For instance,

>>> for cpt in rp.budget(H):
...     print("{0.label}: {0.u:.3f}".format(cpt))
...
E_phi: 0.843
E_b: 0.023










            

          

      

      

    

  

    
      
          
            
  
Core Functions and Classes



	Core Functions


	Uncertain Number Types


	Uncertain Real Numbers


	Uncertain Complex Numbers










Core Functions

Functions that create elementary uncertain numbers and functions that access uncertain-number attributes, are defined in the core module. There is also a set of standard mathematical functions (e.g.: sqrt(), sin(), log10(), etc) for uncertain numbers. These functions can be applied to the numeric Python types too.

All core functions are automatically imported into the GTC namespace (i.e., they are available after from GTC import *).


	
acos(x)

	Uncertain number arc-cosine function


Note

There is a singularity in the uncertainty if the value of x is unity.
For example,

>>> acos(ureal(1, 1))
Traceback (most recent call last):
...
ZeroDivisionError: float division by zero





More generally, uncertainty in the inverse cosine function becomes
large when \(x\) is close to unity.
This may be an indication that the measurement model is ill-formed or that a
GUM calculation of uncertainty is not appropriate.




Note

In the complex case there are two branch cuts: one extends
right, from 1 along the real axis to \(\infty\), continuous
from below; the other extends left, from -1 along the real axis
to \(-\infty\), continuous from above.








	
acosh(x)

	Uncertain number hyperbolic arc-cosine function


Note

In the complex case there is one branch cut,
extending left from 1 along the
real axis to \(-\infty\), continuous from above.








	
asin(x)

	Uncertain number arcsine function


Note

There is a singularity in the uncertainty if the value of x is unity.
For example,

>>> asin(ureal(1, 1))
Traceback (most recent call last):
...
ZeroDivisionError: float division by zero





More generally, uncertainty in the inverse sine function becomes
large when \(x\) is close to unity.
This may be an indication that the measurement model is ill-formed or that a
GUM calculation of uncertainty is not appropriate.




Note

In the complex case there are two branch cuts: one extends
right, from 1 along the real axis to \(\infty\),
continuous from below; the other extends left, from -1 along
the real axis to \(-\infty\), continuous from above.








	
asinh(x)

	Uncertain number hyperbolic arcsine function


Note

In the complex case there are two branch cuts: one extends
from \(\mathrm{j}\) along the imaginary axis to
\(\mathrm{j}\infty\), continuous from the right;
the other extends from \(-\mathrm{j}\) along the
imaginary axis to \(-\mathrm{j}\infty\), continuous
from the left.








	
atan(x)

	Uncertain number arctangent function


Note

In the complex case there are two branch cuts:
One extends from \(\mathrm{j}\) along the imaginary axis to
\(\mathrm{j}\infty\), continuous from the right.
The other extends from \(-\mathrm{j}\) along the imaginary
axis to \(-\mathrm{j}\infty\), continuous from the left.








	
atan2(y, x)

	Two-argument uncertain number arctangent function


	Parameters:

	
	x (UncertainReal) – abscissa


	y (UncertainReal) – ordinate









Note

this function is not defined for uncertain complex numbers
(use phase())



Example:

>>> x = ureal(math.sqrt(3)/2,1)
>>> y = ureal(0.5,1)
>>> theta = atan2(y,x)
>>> theta
ureal(0.5235987755982989,1.0,inf)
>>> math.degrees( theta.x )
30.000000000000004










	
atanh(x)

	Uncertain number hyperbolic arctangent function


Note

In the complex case there are two branch cuts:
one extends from 1 along the real axis to \(\infty\),
continuous from below; the other extends from -1
along the real axis to \(-\infty\), continuous
from above.








	
component(y, x)

	Return the magnitude of the component of uncertainty
in y due to x.


	Parameters:

	
	y (UncertainReal or UncertainComplex) – an uncertain number


	x (UncertainReal or UncertainComplex) – an uncertain number






	Return type:

	float [https://docs.python.org/3/library/functions.html#float]





If x and y are uncertain real, the function calls
reporting.u_component() and returns the magnitude
of the result.

If either x or y is uncertain complex,
the returned value represents the magnitude
of the component of uncertainty matrix (this is
obtained by applying reporting.u_bar()
to the result obtained from reporting.u_component()).

If either x or y is a number, zero is returned.

component can also e used in conjunction with result()
to evaluate a component of uncertainty with respect to an
intermediate uncertain number.

Examples:

>>> x1 = ureal(2,1)
>>> x2 = ureal(5,1)
>>> y = x1/x2
>>> reporting.u_component(y,x2)
-0.08
>>> component(y,x2)
0.08

>>> z1 = ucomplex(1+2j,1)
>>> z2 = ucomplex(3-2j,1)
>>> y = z1 - z2
>>> reporting.u_component(y,z2)
ComponentOfUncertainty(rr=-1.0, ri=0.0, ir=0.0, ii=-1.0)
>>> component(y,z2)
1.0

>>> I = ureal(1E-3,1E-5)
>>> R = ureal(1E3,1)
>>> V = result( I*R )
>>> P = V**2/R
>>> component(P,V)
2.0099751242241783e-05










	
constant(x, label=None)

	Create a constant uncertain number (with no uncertainty)


	Parameters:

	x (float [https://docs.python.org/3/library/functions.html#float] or complex [https://docs.python.org/3/library/functions.html#complex]) – a number



	Return type:

	UncertainReal or UncertainComplex





If x is complex, return an uncertain complex number.

If x is real return an uncertain real number.

Example:

>>> e = constant(math.e,label='Euler')
>>> e
ureal(2.718281828459045,0.0,inf, label='Euler')










	
cos(x)

	Uncertain number cosine function






	
cosh(x)

	Uncertain number hyperbolic cosine function






	
dof(x)

	Return the degrees-of-freedom

Returns inf when the degrees of freedom is greater than 1E6

Examples:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> dof(ur)
3.0
>>> ur.df
3.0

>>> uc = ucomplex(1+2j,(.3,.2),3,label='x')
>>> dof(uc)
3.0










	
exp(x)

	Uncertain number exponential function






	
fmod(x, y)

	Return x modulo y


	Parameters:

	
	x – an UncertainReal or a number


	y – a number (int or float)









Note

If x is not an uncertain number,
returns math.fmod(x,y) [https://docs.python.org/3/library/math.html#math.fmod].




Note

When x is an uncertain number, it is an untested assumption
that the standard uncertainty associated with x is not greater
than the magnitude of y.




New in version 1.4.0.








	
get_correlation(arg1, arg2=None)

	Return correlation

The input arguments may be a pair of uncertain numbers,
or a single uncertain complex number.

When a pair of uncertain real numbers is provided,
the correlation between the arguments is returned as
a real number.

When one, or both, arguments are uncertain complex numbers,
a CorrelationMatrix is returned,
representing a 2-by-2 matrix of correlation coefficients.






	
get_covariance(arg1, arg2=None)

	Evaluate covariance.

The input arguments can be a pair of uncertain numbers,
or a single uncertain complex number.

When a pair of uncertain real numbers is supplied,
the correlation between the two arguments is returned
as a real number.

When one, or both, arguments are uncertain complex numbers,
a CovarianceMatrix is returned,
representing a 2-by-2 variance-covariance matrix.






	
label(x)

	Return the label






	
log(x)

	Uncertain number natural logarithm


Note

In the complex case there is one branch cut,
from 0 along the negative real axis to \(-\infty\),
continuous from above.








	
log10(x)

	Uncertain number common logarithm (base-10)


Note

In the complex case there is one branch cut,
from 0 along the negative real
axis to \(-\infty\), continuous from above.








	
mag_squared(x)

	Return the squared magnitude of x.


Note

If x is an uncertain number, the magnitude
squared is returned as an uncertain real number,
otherwise :func:abs(x)**2 is returned.








	
magnitude(x)

	Return the magnitude of x


Note

If x is not an uncertain number type,
returns abs(x) [https://docs.python.org/3/library/functions.html#abs].








	
multiple_ucomplex(x_seq, u_seq, df, label_seq=None)

	Return a sequence of uncertain complex numbers


	Parameters:

	
	x_seq – a sequence of complex values


	u_seq – a sequence of standard uncertainties or covariances


	df – the degrees-of-freedom


	label_seq – a sequence of labels for the uncertain numbers






	Return type:

	a sequence of UncertainComplex





This function defines an set of uncertain complex
numbers with the same number of degrees-of-freedom.

Correlation between any pairs of these uncertain
numbers will not invalidate degrees-of-freedom calculations.
(see: R Willink, Metrologia 44 (2007) 340-349, Sec. 4.1)

Example:

# GUM Appendix H2
>>> values = [4.999+0j,0.019661+0j,1.04446j]
>>> uncert = [(0.0032,0.0),(0.0000095,0.0),(0.0,0.00075)]
>>> v,i,phi = multiple_ucomplex(values,uncert,5)

>>> set_correlation(-0.36,v.real,i.real)
>>> set_correlation(0.86,v.real,phi.imag)
>>> set_correlation(-0.65,i.real,phi.imag)

>>> z = v * exp(phi)/ i
>>> print(z)
(+127.732(70)+219.847(296)j)
>>> z.r
-0.591484610818998...










	
multiple_ureal(x_seq, u_seq, df, label_seq=None)

	Return a sequence of related elementary uncertain real numbers


	Parameters:

	
	x_seq – a sequence of values (estimates)


	u_seq – a sequence of standard uncertainties


	df – the degrees-of-freedom


	label_seq – a sequence of labels






	Return type:

	a sequence of UncertainReal





Defines an set of uncertain real numbers with
the same number of degrees-of-freedom.

Correlation between any pairs of this set of uncertain
numbers defined will not invalidate degrees-of-freedom
calculations.
(see: R Willink, Metrologia 44 (2007) 340-349, Sec. 4.1)

Example:

# Example from GUM-H2
>>> x = [4.999,19.661E-3,1.04446]
>>> u = [3.2E-3,9.5E-6,7.5E-4]
>>> labels = ['V','I','phi']
>>> v,i,phi = multiple_ureal(x,u,4,labels)

>>> set_correlation(-0.36,v,i)
>>> set_correlation(0.86,v,phi)
>>> set_correlation(-0.65,i,phi)

>>> r = v/i*cos(phi)
>>> r
ureal(127.732169928102...,0.0699787279883717...,4.0)










	
phase(z)

	
	Parameters:

	z (UncertainComplex) – an uncertain complex number



	Returns:

	the phase in radians



	Return type:

	UncertainReal










	
pow(x, y)

	Uncertain number power function

Raises x to the power of y






	
result(un, label=None)

	Create an uncertain number to represent an intermediate result


	Parameters:

	
	un – UncertainReal or UncertainComplex or UncertainArray


	label – str or a sequence of str






	Return type:

	UncertainReal or UncertainComplex or UncertainArray





When un is an array, an UncertainArray is returned
containing the intermediate uncertain number objects.

The component of uncertainty, or the sensitivity, of an uncertain number
with respect to an intermediate result can be evaluated.

Declaring intermediate results also enables uncertain
numbers to be stored in an archive.


Note

This function will usually be applied to a temporary object.




Note

Applying this function to an elementary uncertain number does not create
an intermediate intermediate result. If a label is already assigned to the
elementary uncertain number, it will not be changed and a warning
will be raised, otherwise result() will assign a label.



Example:

>>> I = ureal(1.3E-3,0.01E-3)
>>> R = ureal(995,7)
>>> V = result( I*R )
>>> P = V**2/R
>>> component(P,V)
3.505784505642068e-05










	
set_correlation(r, arg1, arg2=None)

	Set correlation between elementary uncertain numbers

The input arguments can be a pair of uncertain numbers
(the same type, real or complex), or a single
uncertain complex number.

The uncertain number arguments must be elementary
uncertain numbers.

If the arguments have finite degrees of
freedom, they must be declared together using either
multiple_ureal() or multiple_ucomplex().

If the uncertain number arguments have infinite degrees of
freedom they can, alternatively, be declared by setting the
argument independent=False when calling
ureal() or ucomplex().

A ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised when illegal arguments are used

When a pair of uncertain real numbers is provided,
r is the correlation coefficient between them.

When a pair of uncertain complex number arguments is provided,
r must be a 4-element sequence containing correlation
coefficients between the components of the complex quantities.

Examples:

>>> x1 = ureal(2,1,independent=False)
>>> x2 = ureal(5,1,independent=False)
>>> set_correlation(.3,x1,x2)
>>> get_correlation(x1,x2)
0.3

>>> z = ucomplex(1+0j,(1,1),independent=False)
>>> z
ucomplex((1+0j), u=[1.0,1.0], r=0.0, df=inf)
>>> set_correlation(0.5,z)
>>> z
ucomplex((1+0j), u=[1.0,1.0], r=0.0, df=inf)

>>> x1 = ucomplex(1,(1,1),independent=False)
>>> x2 = ucomplex(1,(1,1),independent=False)
>>> correlation_mat = (0.25,0.5,0.75,0.5)
>>> set_correlation(correlation_mat,x1,x2)
>>> get_correlation(x1,x2)
CorrelationMatrix(rr=0.25, ri=0.5, ir=0.75, ii=0.5)










	
sin(x)

	Uncertain number sine function






	
sinh(x)

	Uncertain number hyperbolic sine function






	
sqrt(x)

	Uncertain number square root function


Note

There is a singularity in the uncertainty if the value of x is zero.
For example,

>>> sqrt(ureal(0,1))
Traceback (most recent call last):
...
ZeroDivisionError: float division by zero





More generally, uncertainty in \(\sqrt{x}\) becomes
large when \(x\) is close to zero.
This may be an indication that the measurement model is ill-formed or that a
GUM calculation of uncertainty is not appropriate.




Note

In the complex case there is one branch cut,
from 0 along the negative real
axis to \(-\infty\), continuous from above.








	
tan(x)

	Uncertain number tangent function






	
tanh(x)

	Uncertain number hyperbolic tangent function






	
ucomplex(z, u, df=inf, label=None, independent=True)

	Create an elementary uncertain complex number


	Parameters:

	
	z (complex [https://docs.python.org/3/library/functions.html#complex]) – the value (estimate)


	u (float [https://docs.python.org/3/library/functions.html#float], 2-element or 4-element sequence) – the standard uncertainty or variance


	df (float [https://docs.python.org/3/library/functions.html#float]) – the degrees-of-freedom






	Return type:

	UncertainComplex



	Raises:

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if df or u have illegal values.





u can be a float, a 2-element or 4-element sequence.

If u is a float, the standard uncertainty in both
the real and imaginary components is taken to be u.

If u is a 2-element sequence, the first element is
taken to be the standard uncertainty in the real component
and the second element is taken to be the standard
uncertainty in the imaginary component.

If u is a 4-element sequence, the sequence is
interpreted as a variance-covariance matrix.

Examples:

>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')
>>> uc
ucomplex((1+2j), u=[0.5,0.5], r=0.0, df=3.0, label='x')





>>> cv = (1.2,0.7,0.7,2.2)
>>> uc = ucomplex(0.2-.5j, cv)
>>> variance(uc)
VarianceCovariance(rr=1.1999999999999997, ri=0.7, ir=0.7, ii=2.2)










	
uid(x)

	Return the GTC unique identifier for the uncertain number or None


New in version 1.3.7.








	
uncertainty(x)

	Return the standard uncertainty

If x is an uncertain complex number,
return a 2-element sequence containing the standard
uncertainties of the real and imaginary components.

If x is an uncertain real number,
return the standard uncertainty.

Otherwise, return 0.

Examples:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> uncertainty(ur)
0.5
>>> ur.u
0.5

>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')
>>> uncertainty(uc)
StandardUncertainty(real=0.5, imag=0.5)










	
ureal(x, u, df=inf, label=None, independent=True)

	Create an elementary uncertain real number


	Parameters:

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – the value (estimate)


	u (float [https://docs.python.org/3/library/functions.html#float]) – the standard uncertainty


	df (float [https://docs.python.org/3/library/functions.html#float]) – the degrees-of-freedom


	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string label


	independent (bool [https://docs.python.org/3/library/functions.html#bool]) – not correlated with other UNs






	Return type:

	UncertainReal





Example:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> ur
ureal(2.5,0.5,3.0, label='x')










	
value(x)

	Return the value

Returns a complex number if x is an uncertain complex number

Returns a real number if x is an uncertain real number

Returns x otherwise.

Example:

>>> un = ureal(3,1)
>>> value(un)
3.0
>>> un.x
3.0










	
variance(x)

	Return the standard variance

If x is an uncertain real number, return the
standard variance.

If x is an uncertain complex number, return
a 4-element sequence containing elements of the
variance-covariance matrix.

Otherwise, return 0.

Examples:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> variance(ur)
0.25
>>> ur.v
0.25

>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')
>>> variance(uc)
VarianceCovariance(rr=0.25, ri=0.0, ir=0.0, ii=0.25)











Uncertain Number Types

There are two types of uncertain number, one to represent real-valued quantities (UncertainReal) and one to represent real-complex quantities (UncertainComplex).


Uncertain Real Numbers


UncertainReal defines an uncertain-number object with attributes x, u, v and df,
for the value, uncertainty, variance and degrees-of-freedom, respectively, of the uncertain number.

The function ureal() creates elementary UncertainReal objects. For example,

>>> x = ureal(1.414141,0.01)
>>> x
ureal(1.414141,0.01,inf)





All logical comparison operations (e.g., <, >, ==, etc) applied to uncertain-number objects use the value attribute. For example,

>>> un = ureal(2.5,1)
>>> un > 3
False
>>> un == 2.5
True





When the value of an UncertainReal is converted to a string (e.g., by str [https://docs.python.org/3/library/stdtypes.html#str], or by print() [https://docs.python.org/3/library/functions.html#print]), the precision displayed depends on the uncertainty. The two least significant digits of the value correspond to the two most significant digits of the standard uncertainty. The value of standard uncertainty is appended to the string between parentheses.

For example,

>>> x = ureal(1.414141,0.01)
>>> str(x)
' 1.414(10)'
>>> print(x)
1.414(10)





When an UncertainReal is converted to its Python representation (e.g., by repr() [https://docs.python.org/3/library/functions.html#repr]) a string is returned that shows the representation of the elements that define the uncertain number.

For example,

>>> x = ureal(1.4/3,0.01,5,label='x')
>>> repr(x)
"ureal(0.4666666666666666,0.01,5.0, label='x')"









	
class UncertainReal(x, u_comp, d_comp, i_comp, node=None)

	An UncertainReal holds information about the measured
value of a real-valued quantity


	
conjugate()

	Return the complex conjugate


	Return type:

	UncertainReal










	
property df

	Return the degrees of freedom


	Return type:

	float [https://docs.python.org/3/library/functions.html#float]





Note ur.df is equivalent to dof(ur)

Example:

>>> ur = ureal(2.5,0.5,3)
>>> ur.df
3.0
>>> dof(ur)
3.0










	
property imag

	Returns the imaginary component


	Return type:

	UncertainReal










	
property label

	The uncertain-number label


	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]





Note ur.label is equivalent to label(ur)

Example:

>>> ur = ureal(2.5,0.5,label='x')
>>> ur.label
'x'
>>> label(ur)
'x'










	
property real

	Return the real component


	Return type:

	UncertainReal










	
property u

	Return the standard uncertainty


	Return type:

	float [https://docs.python.org/3/library/functions.html#float]





Note that ur.u is equivalent to uncertainty(ur)

Example:

>>> ur = ureal(2.5,0.5)
>>> ur.u
0.5
>>> uncertainty(ur)
0.5










	
property uid

	Return the unique identifier for the uncertain number, or None.

Note that un.uid is equivalent to uid(un)


New in version 1.3.7.








	
property v

	Return the standard variance


	Return type:

	float [https://docs.python.org/3/library/functions.html#float]





Note that ur.v is equivalent to variance(ur)

Example:

>>> ur = ureal(2.5,0.5)
>>> ur.v
0.25
>>> variance(ur)
0.25










	
property x

	Return the value


	Return type:

	float [https://docs.python.org/3/library/functions.html#float]





Note that ur.x is equivalent to value(ur)

Example:

>>> ur = ureal(2.5,0.5)
>>> ur.x
2.5
>>> value(ur)
2.5















Uncertain Complex Numbers


UncertainComplex defines an uncertain-number object with attributes x, u, v and df,
for the value, uncertainty, variance-covariance matrix and degrees-of-freedom, respectively.

The function ucomplex() creates elementary UncertainComplex objects,
for example

>>> z = ucomplex(1.333-0.121212j,(0.01,0.01))





Equality comparison operations (== and !=) applied to uncertain-complex-number objects use the value attribute.
For example,

>>> uc = ucomplex(3+3j,(1,1))
>>> uc == 3+3j
True





The built-in function abs() [https://docs.python.org/3/library/functions.html#abs] returns the magnitude of the value as a Python float (use magnitude() if uncertainty propagation is required). For example,

>>> uc = ucomplex(1+1j,(1,1))
>>> abs(uc)
1.4142135623730951

>>> magnitude(uc)
ureal(1.4142135623730951,0.9999999999999999,inf)





When an UncertainComplex is converted to a string (e.g., by the str [https://docs.python.org/3/library/stdtypes.html#str] function or by print() [https://docs.python.org/3/library/functions.html#print]), the precision depends on the uncertainty.

The lesser of the uncertainties in the real and imaginary components will determine the precision displayed. The two least significant digits of the formated component values will correspond to the two most significant digits of this standard uncertainty. Values of standard uncertainty are appended to the component values between parentheses.

For example,

>>> z = ucomplex(1.333-0.121212j,(0.01,0.002))
>>> print(z)
(+1.3330(100)-0.1212(20)j)





When an UncertainComplex is converted to its Python representation ( e.g., by repr() [https://docs.python.org/3/library/functions.html#repr] ), a string is returned that shows the representation of the elements that define the uncertain number.

For example,

>>> z = ucomplex(1.333-0.121212j,(0.01,0.002))
>>> repr(z)
'ucomplex((1.333-0.121212j), u=[0.01,0.002], r=0.0, df=inf)'









	
class UncertainComplex(r, i)

	An UncertainComplex holds information about the measured
value of a complex-valued quantity


	
conjugate()

	Return the complex conjugate

An UncertainComplex object is created by negating the imaginary
component.


	Return type:

	UncertainComplex










	
property df

	Return the degrees-of-freedom

When the object is not an elementary uncertain number, the
effective degrees-of-freedom is calculated using the method
described by
Willink and Hall in Metrologia 2002, 39, pp 361-369 [https://doi.org/10.1088/0026-1394/39/4/5].


	Return type:

	float [https://docs.python.org/3/library/functions.html#float]





Note that uc.df is equivalent to dof(uc)

Example:

>>> uc = ucomplex(1+2j,(.3,.2),3)
>>> uc.df
3.0
>>> dof(uc)
3.0










	
imag

	The imaginary component.


	Type:

	UncertainReal










	
property label

	The uncertain-number label


	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]





Note that uc.label is equivalent to label(uc)

Example:

>>> uc = ucomplex(2.5+.3j,(1,1),label='z')
>>> uc.label
'z'
>>> label(uc)
'z'










	
property r

	Return the correlation coefficient between real
and imaginary components


	Return type:

	float [https://docs.python.org/3/library/functions.html#float]










	
real

	The real component.


	Type:

	UncertainReal










	
property u

	Return standard uncertainties for the real and imaginary components


	Return type:

	StandardUncertainty





Note that uc.u is equivalent to uncertainty(uc)

Example:

>>> uc = ucomplex(1+2j,(.5,.5))
>>> uc.u
StandardUncertainty(real=0.5, imag=0.5)
>>> uncertainty(uc)
StandardUncertainty(real=0.5, imag=0.5)










	
property uid

	Return the unique identifier for the uncertain number, or None.

Note that un.uid is equivalent to uid(un)


New in version 1.3.7.








	
property v

	Return the variance-covariance matrix

The uncertainty of an uncertain complex number can be associated with
a 4-element variance-covariance matrix.


	Return type:

	VarianceCovariance





Note that uc.v is equivalent to variance(uc)

Example:

>>> uc = ucomplex(1+2j,(.5,.5))
>>> uc.v
VarianceCovariance(rr=0.25, ri=0.0, ir=0.0, ii=0.25)
>>> variance(uc)
VarianceCovariance(rr=0.25, ri=0.0, ir=0.0, ii=0.25)










	
property x

	Return the value


	Return type:

	complex [https://docs.python.org/3/library/functions.html#complex]





Note that uc.x is equivalent to value(uc)

Example:

>>> uc = ucomplex(1+2j,(.3,.2))
>>> uc.x
(1+2j)
>>> value(uc)
(1+2j)


















            

          

      

      

    

  

    
      
          
            
  
Evaluating type-A uncertainty

Type-A evaluation of uncertainty involves statistical analysis of data (in
contrast to type-B evaluation, which uses some means other than statistical analysis).

The shorter name ta has been defined as an alias for type_a,
to resolve the names of objects defined in this module.


Sample estimates



	estimate() returns an uncertain number defined from
the statistics of a sample of data.


	multi_estimate_real() returns a sequence of related
uncertain real numbers defined from the multivariate statistics
calculated from a sample of data.


	multi_estimate_complex() returns a sequence of related uncertain
complex numbers defined from the multivariate statistics of a sample of data.


	estimate_digitized() returns an uncertain number for
the mean of a sample of digitized data.


	mean() returns the mean of a sample of data.


	standard_uncertainty() evaluates the standard
uncertainty associated with the sample mean.


	standard_deviation() evaluates the standard
deviation of a sample of data.


	variance_covariance_complex() evaluates the variance
and covariance associated with the mean real component
and mean imaginary component of the data.









Least squares regression



	line_fit() performs an ordinary least-squares straight
line fit to a sample of data.


	line_fit_wls() performs a weighted least-squares straight
line fit to a sample of data. The weights are assumed to be exact.


	line_fit_rwls() performs a weighted least-squares
straight line fit to a sample of data. The weights
are only assumed normalise the variability of observations.


	line_fit_wtls() performs a weighted total least-squares straight
line fit to a sample of data.









Merging uncertain components



	merge() combines results from a type-A and type-B analysis
of the same data.








Note

Many functions in type_a treat data as pure numbers.
Sequences of uncertain numbers can be passed to these
functions, but only the uncertain-number values will be used.

merge() is provided so that the results of type-A
and type-B analyses on the same data can be combined.





Module contents



	
class LineFitOLS(a, b, ssr, N)

	Class to hold the results of an ordinary least-squares regression to data.

It can also be used to apply the results of a regression analysis.


New in version 1.2.




	
property N

	The number of points in the sample






	
property a_b

	Return the intercept a and slope b as a tuple of uncertain numbers






	
property intercept

	Return the intercept as an uncertain number.






	
property slope

	Return the slope as an uncertain number.






	
property ssr

	Sum of the squared residuals

The sum of the squared deviations between values
predicted by the model and the actual data.

If weights are used during the fit, the squares of
weighted deviations are summed.






	
x_from_y(yseq, x_label=None, y_label=None)

	Estimate the stimulus x corresponding to the responses in yseq


	Parameters:

	
	yseq – a sequence of y observations


	x_label – a label for the return uncertain number x


	y_label – a label for the estimate of y based on yseq









Note

When x_label is defined, the uncertain number returned will be
declared an intermediate result (using result())



Example

>>> x_data = [0.1, 0.1, 0.1, 0.3, 0.3, 0.3, 0.5, 0.5, 0.5,
...                 0.7, 0.7, 0.7, 0.9, 0.9, 0.9]
>>> y_data = [0.028, 0.029, 0.029, 0.084, 0.083, 0.081, 0.135, 0.131,
...                 0.133, 0.180, 0.181, 0.183, 0.215, 0.230, 0.216]

>>> fit = type_a.line_fit(x_data,y_data)

>>> x0 = fit.x_from_y( [0.0712, 0.0716] )
>>> x0
ureal(0.2601659751037...,0.01784461112558...,13.0)










	
y_from_x(x, s_label=None, y_label=None)

	Return an uncertain number y that predicts the response to x


	Parameters:

	
	x – a real number, or an uncertain real number


	s_label – a label for an elementary uncertain number associated with observation variability


	y_label – a label for the return uncertain number y








This is a prediction of a single future response y to a stimulus x

The variability in observations is based on residuals obtained during regression.

An uncertain real number can be used for x, in which
case the associated uncertainty will also be propagated into y.


Note

When y_label is defined, the uncertain number returned will be
declared an intermediate result (using result())












	
class LineFitRWLS(a, b, ssr, N)

	Class to hold the results of a relative weighted least-squares regression.
The weights provided normalise the variability of observations.


New in version 1.2.




	
property N

	The number of points in the sample






	
property a_b

	Return the intercept a and slope b as a tuple of uncertain numbers






	
property intercept

	Return the intercept as an uncertain number.






	
property slope

	Return the slope as an uncertain number.






	
property ssr

	Sum of the squared residuals

The sum of the squared deviations between values
predicted by the model and the actual data.

If weights are used during the fit, the squares of
weighted deviations are summed.






	
x_from_y(yseq, s_y, x_label=None, y_label=None)

	Estimate the stimulus x corresponding to the responses in yseq


	Parameters:

	
	yseq – a sequence of further observations of y


	s_y – a scale factor for the uncertainty of the yseq


	x_label – a label for the return uncertain number x


	y_label – a label for the estimate of y based on yseq









Note

When x_label is defined, the uncertain number returned will be
declared an intermediate result (using result())








	
y_from_x(x, s_y, s_label=None, y_label=None)

	Return an uncertain number y that predicts the response to x


	Parameters:

	
	x – a real number, or an uncertain real number


	s_y – a scale factor for the response uncertainty


	s_label – a label for an elementary uncertain number associated with observation variability


	y_label – a label for the return uncertain number y








Returns a single future response y predicted for a stimulus x.

Because there is different variability in
the response to different stimuli, the
scale factor s_y is required. It is assumed
that the standard deviation in the y value is
proportional to s_y.

An uncertain real number can be used for x, in which
case the associated uncertainty is also propagated into y.


Note

When y_label is defined, the uncertain number returned will be
declared an intermediate result (using result())












	
class LineFitWLS(a, b, ssr, N)

	Class to hold the results of a weighted least-squares regression.
The weight factors provided are assumed to correspond exactly to the
variability of observations.


New in version 1.2.




	
property N

	The number of points in the sample






	
property a_b

	Return the intercept a and slope b as a tuple of uncertain numbers






	
property intercept

	Return the intercept as an uncertain number.






	
property slope

	Return the slope as an uncertain number.






	
property ssr

	Sum of the squared residuals

The sum of the squared deviations between values
predicted by the model and the actual data.

If weights are used during the fit, the squares of
weighted deviations are summed.






	
x_from_y(y_data, u_y_data, x_label=None, y_label=None)

	Estimate the stimulus x corresponding to the responses in y_data


	Parameters:

	
	y_data – a sequence of further observations of y


	u_y_data – the standard uncertainty of the y_data elements


	x_label – a label for the return uncertain number x


	y_label – a label for the estimate of y based on y_data








The variations in y_data values are assumed to result from
independent random effects.


Note

When x_label is defined, the uncertain number returned will be
declared an intermediate result (using result())








	
y_from_x(x, s_y, s_label=None, y_label=None)

	Return an uncertain number y that predicts the response to x


	Parameters:

	
	x – a real number, or an uncertain real number


	s_y – response variability uncertainty


	s_label – a label for an elementary uncertain number associated with response variability


	y_label – a label for the return uncertain number y








Returns a single future response y predicted for a stimulus x.

The standard uncertainty s_y is used to create an additive
component of uncertainty associated with variability in the y value.

An uncertain real number can be used for x, in which
case the associated uncertainty is also propagated into y.


Note

When y_label is defined, the uncertain number returned will be
declared an intermediate result (using result())












	
class LineFitWTLS(a, b, ssr, N)

	This object holds results from a TLS linear regression to data.


New in version 1.2.




	
property N

	The number of points in the sample






	
property a_b

	Return the intercept a and slope b as a tuple of uncertain numbers






	
property intercept

	Return the intercept as an uncertain number.






	
property slope

	Return the slope as an uncertain number.






	
property ssr

	Sum of the squared residuals

The sum of the squared deviations between values
predicted by the model and the actual data.

If weights are used during the fit, the squares of
weighted deviations are summed.










	
estimate(seq, label=None)

	Return an uncertain number for the mean of the data in seq


	Parameters:

	
	seq – a sequence of data


	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – a label for the returned uncertain number






	Return type:

	UncertainReal or UncertainComplex





The elements of seq may be real numbers, complex numbers, or
uncertain real or complex numbers. Note that only the value of uncertain
numbers will be used.

The function returns an UncertainReal when
the mean of the data is real, and an UncertainComplex
when the mean of the data is complex.

In a type-A evaluation, the sample mean provides an estimate of the
quantity of interest. The uncertainty in this estimate
is the standard deviation of the sample mean (or the
sample covariance of the mean, in the complex case).

Examples:

>>> data = range(15)
>>> type_a.estimate(data)
ureal(7.0,1.1547005383792515,14)

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]

>>> type_a.estimate(data)
ucomplex((1.059187840567141+0.9574410497332932j), u=[0.28881665310241805,0.2655555630050262], r=-0.3137404512459525, df=9)










	
estimate_digitized(seq, delta, label=None, truncate=False)

	Return an uncertain number for the mean of digitized data in seq


	Parameters:

	
	seq (float, UncertainReal or UncertainComplex) – data


	delta (float [https://docs.python.org/3/library/functions.html#float]) – digitization step size


	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – label for uncertain number returned


	truncate (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, truncation, rather than rounding, is assumed






	Return type:

	UncertainReal or UncertainComplex





A sequence of data that has been formatted with fixed precision
can completely conceal a small amount of variability in the original
values, or merely obscure that variability.

This function recognises the possible interaction between truncation, or rounding,
errors and random errors in the underlying data. The function
evaluates the mean of the data and evaluates the uncertainty
in this mean.

Set the argument truncate to True
if data have been truncated, instead of rounded.

See reference: R Willink, Metrologia, 44 (2007) 73-81

Examples:

# LSD = 0.0001, data varies between -0.0055 and -0.0057
>>> seq = (-0.0056,-0.0055,-0.0056,-0.0056,-0.0056,
...      -0.0057,-0.0057,-0.0056,-0.0056,-0.0057,-0.0057)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.005627272727272...,1.9497827808661...e-05,10)

# LSD = 0.0001, data varies between -0.0056 and -0.0057
>>> seq = (-0.0056,-0.0056,-0.0056,-0.0056,-0.0056,
... -0.0057,-0.0057,-0.0056,-0.0056,-0.0057,-0.0057)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.005636363636363...,1.52120004824377...e-05,10)

# LSD = 0.0001, no spread in data values
>>> seq = (-0.0056,-0.0056,-0.0056,-0.0056,-0.0056,
... -0.0056,-0.0056,-0.0056,-0.0056,-0.0056,-0.0056)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.0056,2.8867513459481...e-05,10)

# LSD = 0.0001, no spread in data values, fewer points
>>> seq = (-0.0056,-0.0056,-0.0056)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.0056,3.2914029430219...e-05,2)










	
line_fit(x, y, label=None)

	Return a least-squares straight-line fit to the data


	Parameters:

	
	x – sequence of stimulus data (independent-variable)


	y – sequence of response data (dependent-variable)


	label – suffix to label the uncertain numbers a and b






	Returns:

	an object containing regression results



	Return type:

	LineFitOLS





Performs an ordinary least-squares regression of y to x.

Example:

>>> x = [1,2,3,4,5,6,7,8,9]
>>> y = [15.6,17.5,36.6,43.8,58.2,61.6,64.2,70.4,98.8]
>>> result = type_a.line_fit(x,y)
>>> a,b = result.a_b
>>> a
ureal(4.8138888888888...,4.8862063121833...,7)
>>> b
ureal(9.4083333333333...,0.8683016476563...,7)

>>> y_p = a + b*5.5
>>> dof(y_p)
7.0






New in version 1.2.








	
line_fit_rwls(x, y, s_y, dof=None, label=None)

	Return a relative weighted least-squares straight-line fit

The s_y values are used to scale variability in the y data.
It is assumed that the standard deviation of each y value is
proportional to the corresponding s_y scale factor.
The unknown common factor in the uncertainties is estimated from the residuals.


	Parameters:

	
	x – sequence of stimulus data (independent-variable)


	y – sequence of response data (dependent-variable)


	s_y – sequence of scale factors


	dof – degrees of freedom


	label – suffix to label the uncertain numbers a and b






	Returns:

	an object containing regression results



	Return type:

	LineFitRWLS





The optional argument dof can be used to choose the number of
degrees of freedom attributed to the uncertain numbers
returned for the slope and intercept. By default, the degrees
of freedom is N - 2, where N is the length of the data sequence.
However, when the elements of s_y are not all equal this
value will be too high. The argument may be set as appropriate.

Example:

>>> x = [1,2,3,4,5,6]
>>> y = [3.014,5.225,7.004,9.061,11.201,12.762]
>>> s_y = [0.2,0.2,0.2,0.4,0.4,0.4]
>>> fit = type_a.line_fit_rwls(x,y,s_y)
>>> a, b = fit.a_b
>>>
>>> print(fit)

Relative Weighted Least-Squares Results:

  Intercept: 1.14(12)
  Slope: 1.973(41)
  Correlation: -0.87
  Sum of the squared residuals: 1.3395217958...
  Number of points: 6






Changed in version 1.4.1: dof keyword argument added




New in version 1.2.








	
line_fit_wls(x, y, u_y, dof=None, label=None)

	Return a weighted least-squares straight-line fit


	Parameters:

	
	x – sequence of stimulus data (independent-variable)


	y – sequence of response data (dependent-variable)


	u_y – sequence of uncertainties in the response data


	dof – degrees of freedom


	label – suffix to label the uncertain numbers a and b






	Returns:

	an object containing regression results



	Return type:

	LineFitWLS





The optional argument dof can be used to choose the number of
degrees of freedom attributed to the uncertain numbers
returned for the slope and intercept. By default, infinite degrees
of freedom is used, because weighting is provided for the
y data suggesting that the dispersion is known.

Example:

>>> x = [1,2,3,4,5,6]
>>> y = [3.2, 4.3, 7.6, 8.6, 11.7, 12.8]
>>> u_y = [0.5,0.5,0.5,1.0,1.0,1.0]

>>> fit = type_a.line_fit_wls(x,y,u_y)
>>> fit.a_b
 InterceptSlope(a=ureal(0.8852320675105...,0.5297081435088...,inf),
 b=ureal(2.056962025316...,0.177892016741...,inf))






Changed in version 1.4.1: dof keyword argument added




New in version 1.2.








	
line_fit_wtls(x, y, u_x, u_y, a0_b0=None, r_xy=None, dof=None, label=None)

	Return a total least-squares straight-line fit


	Parameters:

	
	x – sequence of independent-variable data


	y – sequence of dependent-variable data


	u_x – sequence of uncertainties in x


	u_y – sequence of uncertainties in y


	a0_b0 – a pair of initial estimates for the intercept and slope


	r_xy – correlation between x-y pairs


	dof – degrees of freedom


	label – suffix labeling the uncertain numbers a and b






	Returns:

	an object containing the fitting results



	Return type:

	LineFitWTLS





The optional argument a_b can be used to provide a pair
of initial estimates for the intercept and slope.

The optional argument dof can be used to choose the number of
degrees of freedom attributed to the uncertain numbers
returned for the slope and intercept. By default, the degrees
of freedom are infinite, because weighting is provided for the x
and y data suggesting that the dispersion is known.

Based on paper by M Krystek and M Anton,
Meas. Sci. Technol. 22 (2011) 035101 (9pp)

Example:

# Pearson-York test data see, e.g.,
# Lybanon, M. in Am. J. Phys 52 (1) 1984
>>> x=[0.0,0.9,1.8,2.6,3.3,4.4,5.2,6.1,6.5,7.4]
>>> wx=[1000.0,1000.0,500.0,800.0,200.0,80.0,60.0,20.0,1.8,1.0]

>>> y=[5.9,5.4,4.4,4.6,3.5,3.7,2.8,2.8,2.4,1.5]
>>> wy=[1.0,1.8,4.0,8.0,20.0,20.0,70.0,70.0,100.0,500.0]

# standard uncertainties required for weighting
>>> ux=[1./math.sqrt(wx_i) for wx_i in wx ]
>>> uy=[1./math.sqrt(wy_i) for wy_i in wy ]

>>> result = ta.line_fit_wtls(x,y,ux,uy)
>>> intercept, slope = result.a_b
>>> intercept
ureal(5.47991018...,0.29193349...,inf)
>>> slope
ureal(-0.48053339...,0.057616740...,inf)






Changed in version 1.4.1: dof keyword argument added




New in version 1.2.








	
mean(seq, *args, **kwargs)

	Return the arithmetic mean of data in seq


	Parameters:

	
	seq – a sequence, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], or iterable, of numbers or uncertain numbers


	args – optional arguments when seq is an ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]


	kwargs – optional keyword arguments when seq is an ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]








If seq contains real or uncertain real numbers,
a real number is returned.

If seq contains complex or uncertain complex
numbers, a complex number is returned.

Example:

>>> data = range(15)
>>> type_a.mean(data)
7.0






Note

When seq is an empty ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or
a ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] containing any NaN elements
NaN is returned.

In other cases, a ZeroDivisionError [https://docs.python.org/3/library/exceptions.html#ZeroDivisionError] is raised when there are no elements in seq.








	
merge(a, b, TOL=1e-13)

	Combine the uncertainty components of a and b


	Parameters:

	
	a – an uncertain real or complex number


	b – an uncertain real or complex number


	TOL – float






	Returns:

	an uncertain number with the value of a and the
uncertainty components of a and b combined





The absolute difference between the values of a and b
must be less than TOL and the components of uncertainty
associated with a and b must be distinct, otherwise
a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] will be raised.

Use this function to combine results from
type-A and type-B uncertainty analyses
performed on a common sequence of data.


Note

Some judgement will be required as to
when it is appropriate to merge
uncertainty components.

There is a risk of ‘double-counting’
uncertainty if type-B components
are contributing to the variability
observed in the data, and therefore
assessed in a type-A analysis.




Changed in version 1.3.3: Added the TOL keyword argument.



Example:

# From Appendix H3 in the GUM

# Thermometer readings (degrees C)
t = (21.521,22.012,22.512,23.003,23.507,
    23.999,24.513,25.002,25.503,26.010,26.511)

# Observed differences with calibration standard (degrees C)
b = (-0.171,-0.169,-0.166,-0.159,-0.164,
    -0.165,-0.156,-0.157,-0.159,-0.161,-0.160)

# Arbitrary offset temperature (degrees C)
t_0 = 20.0

# Calculate the temperature relative to t_0
t_rel = [ t_k - t_0 for t_k in t ]

# A common systematic error in all differences
e_sys = ureal(0,0.01)

b_type_b = [ b_k + e_sys for b_k in b ]

# Type-A least-squares regression
y_1_a, y_2_a = type_a.line_fit(t_rel,b_type_b).a_b

# Type-B least-squares regression
y_1_b, y_2_b = type_b.line_fit(t_rel,b_type_b)

# `y_1` and `y_2` have uncertainty components
# related to the type-A analysis as well as the
# type-B systematic error
y_1 = type_a.merge(y_1_a,y_1_b)
y_2 = type_a.merge(y_2_a,y_2_b)










	
multi_estimate_complex(seq_of_seq, labels=None)

	Return a sequence of uncertain complex numbers


	Parameters:

	
	seq_of_seq – a sequence of sequences of data


	labels – a sequence of str labels






	Return type:

	a sequence of UncertainComplex





The sequences in seq_of_seq must all be the same length.
Each sequence contains data that is associated with
a particular quantity. An uncertain number for that quantity will
be created from sample statistics. The covariance
between the different quantities will also be evaluated.

A sequence of elementary uncertain complex numbers is returned. These
uncertain numbers are considered to be related, allowing a degrees-of-freedom
calculations to be performed on derived quantities.

Example:

# From Appendix H2 in the GUM

>>> I = [ complex(x) for x in (19.663E-3,19.639E-3,19.640E-3,19.685E-3,19.678E-3) ]
>>> V = [ complex(x) for x in (5.007,4.994,5.005,4.990,4.999)]
>>> P = [ complex(0,p) for p in (1.0456,1.0438,1.0468,1.0428,1.0433) ]

>>> v,i,p = type_a.multi_estimate_complex( (V,I,P) )

>>> get_correlation(v.real,i.real)
-0.355311219817512

>>> z = v/i*exp(p)
>>> z.real
ureal(127.732169928102...,0.071071407396995...,4.0)
>>> get_correlation(z.real,z.imag)
-0.588429784423515...










	
multi_estimate_real(seq_of_seq, labels=None)

	Return a sequence of uncertain real numbers


	Parameters:

	
	seq_of_seq – a sequence of sequences of data


	labels – a sequence of str labels






	Return type:

	seq of UncertainReal





The sequences in seq_of_seq must all be the same length.
Each sequence contains
a sample of data associated with a particular quantity.
An uncertain number will be created for the quantity
from sample statistics. The covariance
between the different quantities will also be evaluated.

A sequence of elementary uncertain numbers is returned. These uncertain numbers
are considered to be related, allowing a degrees-of-freedom calculations
to be performed on derived quantities.

Example:

# From Appendix H2 in the GUM

>>> V = [5.007,4.994,5.005,4.990,4.999]
>>> I = [19.663E-3,19.639E-3,19.640E-3,19.685E-3,19.678E-3]
>>> phi = [1.0456,1.0438,1.0468,1.0428,1.0433]
>>> v,i,p = type_a.multi_estimate_real((V,I,phi),labels=('V','I','phi'))
>>> v
ureal(4.999...,0.0032093613071761...,4, label='V')
>>> i
ureal(0.019661,9.471008394041335...e-06,4, label='I')
>>> p
ureal(1.04446...,0.0007520638270785...,4, label='phi')

>>> r = v/i*cos(p)
>>> r
ureal(127.732169928102...,0.071071407396995...,4.0)










	
standard_deviation(seq, mu=None)

	Return the sample standard deviation


	Parameters:

	
	seq – sequence of data


	mu – the arithmetic mean of seq








If seq contains real or uncertain real numbers,
the sample standard deviation is returned.

If seq contains complex or uncertain complex
numbers, the standard deviation in the real and
imaginary components is evaluated, as well as
the correlation coefficient between the components.
The results are returned in a pair of objects: a
StandardDeviation namedtuple
and a correlation coefficient.

Only the values of uncertain numbers are used in calculations.

Examples:

>>> data = range(15)
>>> type_a.standard_deviation(data)
4.47213595499958

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]
>>> sd,r = type_a.standard_deviation(data)
>>> sd
StandardDeviation(real=0.913318449990377, imag=0.8397604244242309)
>>> r
-0.31374045124595246










	
standard_uncertainty(seq, mu=None)

	Return the standard uncertainty associated with the sample mean


	Parameters:

	
	seq – sequence of data


	mu – the arithmetic mean of seq






	Return type:

	float or StandardUncertainty





If seq contains real or uncertain real numbers,
the standard uncertainty of the sample mean
is returned.

If seq contains complex or uncertain complex
numbers, the standard uncertainties of the real and
imaginary components are evaluated, as well as the
sample correlation coefficient are returned in a
StandardUncertainty namedtuple

Only the values of uncertain numbers are used in calculations.

Example:

>>> data = range(15)
>>> type_a.standard_uncertainty(data)
1.1547005383792515

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]
>>> u,r = type_a.standard_uncertainty(data)
>>> u
StandardUncertainty(real=0.28881665310241805, imag=0.2655555630050262)
>>> u.real
0.28881665310241805
>>> r
-0.31374045124595246










	
variance_covariance_complex(seq, mu=None)

	Return the sample variance-covariance matrix


	Parameters:

	
	seq – sequence of data


	mu – the arithmetic mean of seq






	Returns:

	a 4-element sequence





If mu is None the mean will be evaluated
by mean().

seq may contain numbers or uncertain numbers.
Only the values of uncertain numbers are used in calculations.

Variance-covariance matrix elements are returned
in a VarianceCovariance namedtuple;
they can be accessed using the
attributes .rr, .ri, ,ir and .ii.

Example:

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]
>>> type_a.variance_covariance_complex(data)
VarianceCovariance(rr=0.8341505910928249, ri=-0.24062910264062262, ir=-0.24062910264062262, ii=0.7051975704291644)

>>> v = type_a.variance_covariance_complex(data)
>>> v[0]
0.8341505910928249
>>> v.rr
0.8341505910928249
>>> v.ii
0.7051975704291644












            

          

      

      

    

  

    
      
          
            
  
Evaluating type-B uncertainty

The shorter name tb has been defined as an alias for type_b, to resolve the
names of objects in this module.


Least-squares regression

line_fit() implements an ordinary least-squares
straight-line regression calculation that accepts uncertain
real numbers for the independent and dependent variables.

line_fit_wls() implements a weighted least-squares
straight-line regression calculation. It accepts uncertain
real numbers for the independent and dependent variables.
It is also possible to specify weights for the regression.

line_fit_wtls() implements a total least-squares
algorithm for a straight-line fitting that can perform a
weighted least-squares regression when both y and x data
are uncertain real numbers, it also handles correlation
between (x,y) data pairs.



Probability distributions: real-valued problems


Functions that convert the half-width
of a one-dimensional distribution to
a standard uncertainty:


	uniform()


	triangular()


	u_shaped()


	arcsine()









Probability distributions: complex-valued problems


Functions that convert information
about two-dimensional distributions into
standard uncertainties:


	uniform_ring()


	uniform_disk()


	unknown_phase_product()









A table of distributions


The mapping distribution is provided so that
the functions above can be selected by name.
For example,

>>> a = 1.5
>>> ureal( 1, type_b.distribution['gaussian'](a) )
ureal(1.0,1.5,inf)
>>> ureal( 1, type_b.distribution['uniform'](a) )
ureal(1.0,0.8660254037844387,inf)
>>> ureal( 1, type_b.distribution['arcsine'](a) )
ureal(1.0,1.0606601717798212,inf)





Keys to distribution are (case-sensitive):


	gaussian


	uniform


	triangular


	arcsine


	u_shaped


	uniform_ring


	uniform_disk









Module contents



	
mean(seq, *args, **kwargs)

	Return the arithmetic mean of data in seq


	Parameters:

	
	seq – a sequence, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], or iterable, of numbers or uncertain numbers


	args – optional arguments when seq is an ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]


	kwargs – optional keyword arguments when seq is an ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]








An uncertain number is returned if seq contains uncertain numbers.

Example

>>> seq = [ ureal(1,1), ureal(2,1), ureal(3,1) ]
>>> function.mean(seq)
ureal(2.0,0.5773502691896257,inf)






Note

When seq is an empty ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or
a ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] containing any NaN elements
NaN is returned.

In other cases, a ZeroDivisionError [https://docs.python.org/3/library/exceptions.html#ZeroDivisionError] is raised when there are no elements in seq.








	
line_fit(x, y)

	Least-squares fit intercept and slope


New in version 1.2.




	Parameters:

	
	x – sequence of independent variable data


	y – sequence of dependent variable data






	Return type:

	a LineFitOLS





y must be a sequence of uncertain real numbers.

Performs an ordinary least-squares regression.


Note

Uncertainty in the parameter estimates is found
by propagation through the regression
formulae. This does not take residuals into account.

The function type_a.line_fit() performs a regression
analysis that evaluates uncertainty in
the parameter estimates using the residuals.

If appropriate, the results from both type-A and type-B
analyses can be merged (see type_a.merge()).



Example:

>>> a0 =10
>>> b0 = -3
>>> u0 = .2

>>> x = [ float(x_i) for x_i in xrange(10) ]
>>> y = [ ureal(b0*x_i + a0,u0) for x_i in x ]

>>> a,b = tb.line_fit(x,y).a_b
>>> a
ureal(10.0,0.1175507627290...,inf)
>>> b
ureal(-3.0,0.02201927530252...,inf)










	
line_fit_wls(x, y, u_y=None)

	Weighted least-squares linear regression


New in version 1.2.




	Parameters:

	
	x – sequence of independent variable data


	y – sequence of dependent variable data


	u_y – sequence of uncertainties in y






	Return type:

	LineFitWLS





y must be a sequence of uncertain real numbers.

Performs a weighted least-squares regression.

Weights are calculated from the uncertainty of
the y elements unless the sequence u_y
is provided.


Note

The uncertainty in the parameter estimates is found
by propagation of uncertainty through the regression
formulae. This does not take account of the residuals.

The function type_a.line_fit_wls() can be used to
carry out a regression analysis that obtains uncertainty in
the parameter estimates due to the residuals.

If necessary, the results of both type-A and type-B
analyses can be merged (see type_a.merge()).



Example:

>>> x = [1,2,3,4,5,6]
>>> y = [3.2, 4.3, 7.6, 8.6, 11.7, 12.8]
>>> u_y = [0.5,0.5,0.5,1.0,1.0,1.0]
>>> y = [ ureal(y_i,u_y_i) for y_i, u_y_i in zip(y,u_y) ]

>>> fit = type_b.line_fit_wls(x,y)
>>> a, b = fit.a_b
>>> a
ureal(0.8852320675105...,0.5297081435088...,inf)
>>> b
ureal(2.0569620253164...,0.1778920167412...,inf)










	
line_fit_wtls(x, y, u_x=None, u_y=None, a_b=None, r_xy=None)

	Perform straight-line regression with uncertainty in x and y


New in version 1.2.




	Parameters:

	
	x – list of uncertain real numbers for the independent variable


	y – list of uncertain real numbers for the dependent variable


	u_x – a sequence of uncertainties for the x data


	u_y – a sequence of uncertainties for the y data


	a_b – a pair of initial estimates for the intercept and slope


	r_xy – correlation between x-y pairs [default: 0]








Returns a LineFitWTLS object

The elements of x and y must be uncertain numbers
with non-zero uncertainties. If specified, the optional arguments
u_x and u_y will be used uncertainties to weight
the data for the regression, otherwise the uncertainties of
the uncertain numbers in the sequences are used.

The optional argument a_b can be used to provide a pair
of initial estimates for the intercept and slope. Otherwise,
initial estimates will be obtained by calling line_fit_wls.

Implements a Weighted Total Least Squares algorithm
that allows for correlation between x-y pairs. See reference:

M Krystek and M Anton, Meas. Sci. Technol. 22 (2011) 035101 (9pp)

Example:

# Pearson-York test data
# see, e.g., Lybanon, M. in Am. J. Phys 52 (1), January 1984
>>> xin=[0.0,0.9,1.8,2.6,3.3,4.4,5.2,6.1,6.5,7.4]
>>> wx=[1000.0,1000.0,500.0,800.0,200.0,80.0,60.0,20.0,1.8,1.0]
>>> yin=[5.9,5.4,4.4,4.6,3.5,3.7,2.8,2.8,2.4,1.5]
>>> wy=[1.0,1.8,4.0,8.0,20.0,20.0,70.0,70.0,100.0,500.0]

# Convert weights to standard uncertainties
>>> uxin=[1./math.sqrt(wx_i) for wx_i in wx ]
>>> uyin=[1./math.sqrt(wy_i) for wy_i in wy ]

# Define uncertain numbers
>>> x = [ ureal(xin_i,uxin_i) for xin_i,uxin_i in zip(xin,uxin) ]
>>> y = [ ureal(yin_i,uyin_i) for yin_i,uyin_i in zip(yin,uyin) ]

# TLS returns uncertain numbers
>>> a,b = type_b.line_fit_wtls(x,y).a_b
>>> a
ureal(5.47991018...,0.29193349...,inf)
>>> b
ureal(-0.48053339...,0.057616740...,inf)










	
class LineFitOLS(a, b, ssr, N)

	Class to hold results from an ordinary linear regression to data.


New in version 1.2.




	
property N

	The number of points in the sample






	
property a_b

	Return the intercept a and slope b as a tuple of uncertain numbers






	
property intercept

	Return the intercept as an uncertain number.






	
property slope

	Return the slope as an uncertain number.






	
property ssr

	Sum of the squared residuals

The sum of the squared deviations between values
predicted by the model and the actual data.

If weights are used during the fit, the squares of
weighted deviations are summed.






	
x_from_y(yseq, x_label=None)

	Estimate the stimulus x corresponding to the responses in yseq


	Parameters:

	
	yseq – a sequence of further observations of y


	x_label – a label for the return uncertain number x








The items in yseq must be uncertain real numbers.


Note

When x_label is defined, the uncertain number returned will be
declared an intermediate result (using result())








	
y_from_x(x, y_label=None)

	Return an uncertain number y that predicts the response to x


	Parameters:

	
	x – an uncertain real number


	y_label – a label for the return uncertain number y








This is a prediction of a single future response y to a stimulus x


Note

When y_label is defined, the uncertain number returned will be
declared an intermediate result (using result())












	
class LineFitWLS(a, b, ssr, N)

	This object holds results from a weighted LS linear regression to data.


New in version 1.2.




	
property N

	The number of points in the sample






	
property a_b

	Return the intercept a and slope b as a tuple of uncertain numbers






	
property intercept

	Return the intercept as an uncertain number.






	
property slope

	Return the slope as an uncertain number.






	
property ssr

	Sum of the squared residuals

The sum of the squared deviations between values
predicted by the model and the actual data.

If weights are used during the fit, the squares of
weighted deviations are summed.






	
x_from_y(yseq, x_label=None)

	Estimate the stimulus x corresponding to the responses in yseq


	Parameters:

	
	yseq – a sequence of further observations of y


	x_label – a label for the return uncertain number x








The items in yseq must be uncertain real numbers.


Note

When x_label is defined, the uncertain number returned will be
declared an intermediate result (using result())








	
y_from_x(x, y_label=None)

	Return an uncertain number y that predicts the response to x


	Parameters:

	
	x – an uncertain real number


	y_label – a label for the return uncertain number y








This is a prediction of a single future response y to a stimulus x


Note

When y_label is defined, the uncertain number returned will be
declared an intermediate result (using result())












	
class LineFitWTLS(a, b, ssr, N)

	This object holds results from a TLS linear regression to data.


New in version 1.2.




	
property N

	The number of points in the sample






	
property a_b

	Return the intercept a and slope b as a tuple of uncertain numbers






	
property intercept

	Return the intercept as an uncertain number.






	
property slope

	Return the slope as an uncertain number.






	
property ssr

	Sum of the squared residuals

The sum of the squared deviations between values
predicted by the model and the actual data.

If weights are used during the fit, the squares of
weighted deviations are summed.










	
uniform(a)

	Return the standard uncertainty for a uniform distribution.


	Parameters:

	a (float [https://docs.python.org/3/library/functions.html#float]) – the half-width





Example:

>>> x = ureal(1,type_b.uniform(1))
>>> x
ureal(1.0,0.5773502691896258,inf)










	
triangular(a)

	Return the standard uncertainty for a triangular distribution.


	Parameters:

	a (float [https://docs.python.org/3/library/functions.html#float]) – the half-width





Example:

>>> x = ureal(1,type_b.triangular(1))
>>> x
ureal(1.0,0.4082482904638631,inf)










	
u_shaped(a)

	Return the standard uncertainty for an arcsine distribution.


	Parameters:

	a (float [https://docs.python.org/3/library/functions.html#float]) – the half-width





Example:

>>> x = ureal(1,type_b.arcsine(1))
>>> x
ureal(1.0,0.7071067811865475,inf)










	
arcsine(a)

	Return the standard uncertainty for an arcsine distribution.


	Parameters:

	a (float [https://docs.python.org/3/library/functions.html#float]) – the half-width





Example:

>>> x = ureal(1,type_b.arcsine(1))
>>> x
ureal(1.0,0.7071067811865475,inf)










	
uniform_ring(a)

	Return the standard uncertainty for a uniform ring


	Parameters:

	a (float [https://docs.python.org/3/library/functions.html#float]) – the radius





Convert the radius of a uniform ring distribution a
to a standard uncertainty

See reference: B D Hall, Metrologia 48 (2011) 324-332

Example:

>>> z = ucomplex( 0, type_b.uniform_ring(1) )
>>> z
ucomplex((0+0j), u=[0.7071067811865475,0.7071067811865475], r=0.0, df=inf)










	
uniform_disk(a)

	Return the standard uncertainty for a uniform disk


	Parameters:

	a (float [https://docs.python.org/3/library/functions.html#float]) – the radius





Convert the radius of a uniform disk distribution a
to a standard uncertainty.

See reference: B D Hall, Metrologia 48 (2011) 324-332

Example:

>>> z = ucomplex( 0, type_b.uniform_disk(1) )
>>> z
ucomplex((0+0j), u=[0.5,0.5], r=0.0, df=inf)










	
unknown_phase_product(u1, u2)

	Return the standard uncertainty for a product when phases are unknown


	Parameters:

	
	u1 – the standard uncertainty of the first multiplicand


	u2 – the standard uncertainty of the second multiplicand








Obtains the standard uncertainty associated
with a complex product when estimates have unknown phase.

The arguments u1 and u2 are the standard
uncertainties associated with each multiplicand.

See reference: B D Hall, Metrologia 48 (2011) 324-332

Example:

# X = Gamma1 * Gamma2
>>> X = ucomplex( 0, type_b.unknown_phase_product(.1,.1) )
>>> X
ucomplex((0+0j), u=[0.014142135623730954,0.014142135623730954], r=0.0, df=inf)










	
distribution

	Maps distribution[name] \(\rightarrow\) function for standard uncertainty

Example:

>>> type_b.distribution['arcsine'](1.5)
1.06066017177982...












            

          

      

      

    

  

    
      
          
            
  
function module


Utility functions

Functions complex_to_seq() and seq_to_complex()
are useful to convert between the matrix representation of
complex numbers and Python complex [https://docs.python.org/3/library/functions.html#complex].

The function mean() evaluates the mean of a sequence.

The function implicit() will evaluate the solution
to \(fn(x) = 0\)



Module contents



	
complex_to_seq(z)

	Transform a complex number into a 4-element sequence


	Parameters:

	z – a number





This function produces a sequence of the form [x, -y, y, x]
for a complex number z = x + yj.

See also seq_to_complex()

Example:

>>> import numpy
>>> z = 1 + 2j
>>> function.complex_to_seq(z)
(1.0, -2.0, 2.0, 1.0)

>>> m = numpy.array( function.complex_to_seq(z) )
>>> m.shape = (2,2)
>>> print( m )
[[ 1. -2.]
 [ 2.  1.]]






Note

A matrix of the form [[x,-y],[y,x]] can be used to represent z
in matrix computations.

Example:

>>> z = 1 + 2j
>>> m1 = numpy.array( function.complex_to_seq(z) )
>>> m1.shape = (2,2)
>>> m2 = numpy.array( function.complex_to_seq( z.conjugate() ) )
>>> m2.shape = (2,2)
>>> print( numpy.matmul(m1,m2) )
[[5. 0.]
 [0.  5.]]












	
implicit(fn, x_min, x_max, epsilon=1e-13)

	Return the solution to \(fn(x) = 0\)


	Parameters:

	
	fn – a user-defined function of one argument


	x_min (float [https://docs.python.org/3/library/functions.html#float]) – lower limit of search range


	x_max (float [https://docs.python.org/3/library/functions.html#float]) – upper limit of search range


	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – tolerance for algorithm convergence








x_min and x_max delimit a range containing a single root
(ie, the function must cross the x-axis just once inside the range).


Note


	A RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] is raised if the search algorithm fails to converge.


	An AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] is raised if preconditions are not satisfied.






Example:

>>> near_unity = ureal(1,0.05)
>>> fn = lambda x: x**2 - near_unity
>>> function.implicit(fn,0,2)
ureal(1.0,0.025...,inf)






New in version 1.3.4.








	
mean(seq, *args, **kwargs)

	Return the arithmetic mean of data in seq


	Parameters:

	
	seq – a sequence, ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], or iterable, of numbers or uncertain numbers


	args – optional arguments when seq is an ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]


	kwargs – optional keyword arguments when seq is an ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]








An uncertain number is returned if seq contains uncertain numbers.

Example

>>> seq = [ ureal(1,1), ureal(2,1), ureal(3,1) ]
>>> function.mean(seq)
ureal(2.0,0.5773502691896257,inf)






Note

When seq is an empty ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] or
a ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] containing any NaN elements
NaN is returned.

In other cases, a ZeroDivisionError [https://docs.python.org/3/library/exceptions.html#ZeroDivisionError] is raised when there are no elements in seq.








	
seq_to_complex(seq)

	Transform a 4-element sequence into a complex number


	Parameters:

	seq – a 4-element sequence



	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if seq is ill-conditioned





The legitimate form of elements in seq is
[x, -y, y, x], where x is the real component
and y is the imaginary component of a complex number.

See also complex_to_seq()

Examples:

>>> import numpy
>>> seq = (1,-2,2,1)
>>> z = function.seq_to_complex( seq )
>>> z
(1+2j)
>>> a = numpy.array((1,-2,2,1))
>>> a.shape = 2,2
>>> a
array([[ 1, -2],
       [ 2,  1]])
>>> z = function.seq_to_complex(a)
>>> z
(1+2j)
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Reporting

This module provides functions to facilitate reporting information
about uncertainty calculations.

The abbreviation rp is defined as an alias for reporting,
to resolve the names of objects defined in this module.


Reporting functions



	The function budget() produces an uncertainty budget.


	The function k_factor() returns the coverage factor
used for real-valued problems (based on the Student-t distribution).


	The function k_to_dof() returns the degrees of freedom
corresponding to a given coverage factor and coverage probability.


	The function k2_factor_sq() returns
coverage factor squared for the complex-valued problem.


	The function k2_to_dof() returns the degrees of freedom
corresponding to a given coverage factor and coverage probability
in complex-valued problems.


	Functions u_bar() and v_bar() return summary values
for matrix results associated with 2-D uncertainty.









Uncertainty functions



	The function u_component() returns the signed
component of uncertainty in one uncertain number
due to uncertainty in another.


	The function sensitivity() returns the partial
derivative of one uncertain number with respect to another.
This is often called a sensitivity coefficient.









Type functions



	The function is_ureal() can be used to
identify uncertain real numbers.


	The function is_ucomplex() can be used to
identify uncertain complex numbers.









Module contents



	
budget(y, **kwargs)

	Return a sequence of Influence objects


	Parameters:

	
	y – UncertainReal or UncertainComplex:  an uncertain number


	**kwargs – Keyword arguments:


	influences: a sequence of uncertain numbers


	key (str [https://docs.python.org/3/library/stdtypes.html#str]): a sorting key ('u' or 'label')


	reverse (bool [https://docs.python.org/3/library/functions.html#bool]): the sorting order (forward or reverse)


	trim (float [https://docs.python.org/3/library/functions.html#float]): to control the smallest reported magnitudes


	max_number (int [https://docs.python.org/3/library/functions.html#int]): to return no more than max_number components


	intermediate (bool [https://docs.python.org/3/library/functions.html#bool]): to report all intermediate components











	Returns:

	A sequence of Influence namedtuples.





Each Influence has three attributes: label, u, uid.



	label is the label assigned to the uncertain number.


	u is the value of the component of uncertainty (see component());


	uid is the unique identifier for the uncertain number.







The keyword argument influences can be used to report
specific influences.

The keyword argument key sets the sequence ordering to use
the component of uncertainty or the label, respectively, u or label.

The keyword argument reverse controls the sense of ordering.

The keyword argument trim can be used to set the minimum relative
magnitude of components returned. Components of uncertainty greater
than trim times the largest component returned will be reported.
Set trim=0 for a complete list.

The keyword argument max_number can be used to restrict the
number of components returned.

The keyword argument intermediate will cause all components
of uncertainty with respect to all intermediate results to be reported.
When intermediate is True, influences cannot be specified.

Examples:

>>> x1 = ureal(1,1,label='x1')
>>> x2 = ureal(2,0.5,label='x2')
>>> x3 = ureal(3,0.1,label='x3')
>>> y = (x1 - x2) / x3
>>> for i in reporting.budget(y):
...     print("{0}: {1:G}".format(i.label,i.u))
...
x1: 0.333333
x2: 0.166667
x3: 0.0111111

>>> for i in reporting.budget(y,reverse=False):
...     print("{0}: {1:G}".format(i.label,i.u))
...
x3: 0.0111111
x2: 0.166667
x1: 0.333333

>>> y1 = result(x1 + x2,label='y1')
>>> y2 = result(x2 + x3,label='y2')
>>> for i in reporting.budget(y1 + y2,intermediate=True):
...     print("{0}: {1:G}".format(i.label,i.u))
...
y1: 1.11803
y2: 0.509902






Changed in version 1.3.7: The Influence namedtuple has a third attribute uid




Changed in version 1.3.4: Added the intermediate keyword argument.








	
components(y, **kwargs)

	Return a sequence of uid-component of uncertainty pairs


	Parameters:

	
	y – UncertainReal or UncertainComplex:  an uncertain number


	**kwargs – Keyword arguments:


	influences: a sequence of uncertain numbers


	trim (float [https://docs.python.org/3/library/functions.html#float]): control of the smallest included magnitude for u


	max_number (int [https://docs.python.org/3/library/functions.html#int]): return no more than max_number components


	intermediate (bool [https://docs.python.org/3/library/functions.html#bool]): report all intermediate components











	Returns:

	A sequence of Component namedtuples is
returned, each with the attributes uid and u for a
component of uncertainty (see u_component()). The sequence is
sorted in descending order of magnitude for u.





The keyword argument influences can be used to report on
specific influences.

The keyword argument trim can be used to set a minimum relative
magnitude of u for the components returned. Components of uncertainty
with a magnitude greater than trim times the largest value of u
will be reported. Set trim=0 for a complete list.

The keyword argument max_number can be used to set an upper
limit on the number of components returned.

Setting keyword argument intermediate=True causes all the components
of uncertainty with respect to intermediate results to be reported.
When intermediate is True, influences cannot be specified.






	
is_ucomplex(z)

	Return True if z is an uncertain complex number

Example:

>>> z = ucomplex(1+2j,(0.1,0.2))
>>> reporting.is_ucomplex(z)
True










	
is_ureal(x)

	Return True if x is an uncertain real number

Example:

>>> x = ureal(1,1)
>>> reporting.is_ureal(x)
True










	
k2_factor_sq(df=inf, p=95)

	Return a squared coverage factor for an elliptical uncertainty region


	Parameters:

	
	df (float [https://docs.python.org/3/library/functions.html#float]) – the degrees-of-freedom (>=2)


	p (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the coverage probability (%)








Evaluates the square of the coverage factor for an elliptical uncertainty
region with coverage probability p  and df degrees of freedom
based on the F-distribution.

Example:

>>> reporting.k2_factor_sq(3)
    56.99999999999994










	
k2_to_dof(k2, p=95)

	Return the dof corresponding to a bivariate coverage factor k2


	Parameters:

	
	k2 (float [https://docs.python.org/3/library/functions.html#float]) – coverage factor (>0)


	p (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – coverage probability (%)








Evaluates a number of degrees-of-freedom given a coverage
factor for an elliptical uncertainty region with coverage
probability p based on the F-distribution.

Example:

>>> reporting.k2_to_dof(2.6,95)
34.3578842438992...










	
k_factor(df=inf, p=95)

	Return the a coverage factor for an uncertainty interval


	Parameters:

	
	df (float [https://docs.python.org/3/library/functions.html#float]) – the degrees-of-freedom (>1)


	p (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the coverage probability (%)








Evaluates the coverage factor for an uncertainty interval
with coverage probability p and degrees-of-freedom df
based on the Student t-distribution.

Example:

>>> reporting.k_factor(3)
3.182446305284263










	
k_to_dof(k, p=95)

	Return the dof corresponding to a univariate coverage factor k


	Parameters:

	
	k (float [https://docs.python.org/3/library/functions.html#float]) – coverage factor (>0)


	p (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – coverage probability (%)








Evaluates the degrees-of-freedom given a coverage factor for
an uncertainty interval with coverage probability p
based on the Student t-distribution.

Example:

>>> reporting.k_to_dof(2.0,95)
60.43756442698591










	
sensitivity(y, x)

	Return the first partial derivative of y with respect to x


	Parameters:

	
	y – UncertainReal or UncertainComplex or UncertainArray


	x – UncertainReal or UncertainComplex or UncertainArray








If x and y are uncertain real numbers, return a float.

If y or x is an uncertain complex number, return
a 4-element sequence of float, representing the Jacobian matrix.

When x and y are arrays, an UncertainArray
is returned containing the results of applying this function
to the array elements.

Otherwise, return 0.


New in version 1.1.



Example:

>>> x = ureal(3,1)
>>> y = 3 * x
>>> reporting.sensitivity(y,x)
3.0

>>> q = ucomplex(2,1)
>>> z = magnitude(q)    # uncertain real numbers
>>> reporting.sensitivity(z,q)
JacobianMatrix(rr=1.0, ri=0.0, ir=0.0, ii=0.0)

>>> r = ucomplex(3,1)
>>> z = q * r
>>> reporting.sensitivity(z,q)
JacobianMatrix(rr=3.0, ri=-0.0, ir=0.0, ii=3.0)






Note

This function evaluates the sensitivity (partial derivative) of one
uncertain number with respect to another term x.

However, if the standard uncertainty of x is zero, the term is treated
as being absent from the analytical model, so a sensitivity of 0 is reported.

For example

>>> z1 = ucomplex(1+2j,[0,1])
>>> z2 = ucomplex(-1.2-0.9j,[1,0])
>>> z = z1*z2
>>> rp.sensitivity(z,z1.real)
JacobianMatrix(rr=0.0, ri=0.0, ir=0.0, ii=0.0)
>>> rp.sensitivity(z,z1.imag)
JacobianMatrix(rr=0.9, ri=0.0, ir=-1.2, ii=0.0)
>>> rp.sensitivity(z,z2.real)
JacobianMatrix(rr=1.0, ri=0.0, ir=2.0, ii=0.0)
>>> rp.sensitivity(z,z2.imag)
JacobianMatrix(rr=0.0, ri=0.0, ir=0.0, ii=0.0)





If all the partial derivatives of a measurement model are required,
regardless of the associated standard uncertainties, the preferred method is
to assign all standard uncertainty values to unity.

Using the same example as above

>>> z1 = ucomplex(1+2j,1)
>>> z2 = ucomplex(-1.2-0.9j,1)
>>> z = z1*z2
>>> rp.sensitivity(z,z1.real)
JacobianMatrix(rr=-1.2, ri=0.0, ir=-0.9, ii=0.0)
>>> rp.sensitivity(z,z1.imag)
JacobianMatrix(rr=0.9, ri=0.0, ir=-1.2, ii=0.0)
>>> rp.sensitivity(z,z2.real)
JacobianMatrix(rr=1.0, ri=0.0, ir=2.0, ii=0.0)
>>> rp.sensitivity(z,z2.imag)
JacobianMatrix(rr=-2.0, ri=0.0, ir=1.0, ii=0.0)












	
u_bar(ucpt)

	Return the magnitude of a component of uncertainty


	Parameters:

	ucpt (float [https://docs.python.org/3/library/functions.html#float] or 4-element sequence of float [https://docs.python.org/3/library/functions.html#float]) – a component of uncertainty





If ucpt is a sequence, return the root-sum-square
of the elements divided by \(\sqrt{2}\)

If ucpt is a number, return the absolute value.

Example:

>>> x1 = 1-.5j
>>> x2 = .2+7.1j
>>> z1 = ucomplex(x1,1)
>>> z2 = ucomplex(x2,1)
>>> y = z1 * z2
>>> dy_dz1 = reporting.u_component(y,z1)
>>> dy_dz1
ComponentOfUncertainty(rr=0.2, ri=-7.1, ir=7.1, ii=0.2)
>>> reporting.u_bar(dy_dz1)
7.102816342831905










	
u_component(y, x)

	Return the component of uncertainty in y due to x


	Parameters:

	
	y – UncertainReal or UncertainComplex or UncertainArray


	x – UncertainReal or UncertainComplex or UncertainArray








If x and y are uncertain real numbers, return a float.

If y or x is an uncertain complex number, return
a 4-element sequence of float, containing the
components of uncertainty.

When x and y are arrays, an uncertain_array.UncertainArray
is returned containing the results of applying this function
to the array elements.

Otherwise, return 0.

Example:

>>> x = ureal(3,1)
>>> y = 3 * x
>>> reporting.u_component(y,x)
3.0

>>> q = ucomplex(2,1)
>>> z = magnitude(q)    # uncertain real numbers
>>> reporting.u_component(z,q)
ComponentOfUncertainty(rr=1.0, ri=0.0, ir=0.0, ii=0.0)

>>> r = ucomplex(3,1)
>>> z = q * r
>>> reporting.u_component(z,q)
ComponentOfUncertainty(rr=3.0, ri=-0.0, ir=0.0, ii=3.0)










	
v_bar(cv)

	Return the trace of cv divided by 2


	Parameters:

	cv (4-element sequence of float [https://docs.python.org/3/library/functions.html#float]) – a variance-covariance matrix



	Returns:

	float





Example:

>>> x1 = 1-.5j
>>> x2 = .2+7.1j
>>> z1 = ucomplex(x1,(1,.2))
>>> z2 = ucomplex(x2,(.2,1))
>>> y = z1 * z2
>>> y.v
VarianceCovariance(rr=2.3464, ri=1.8432, ir=1.8432, ii=51.4216)
>>> reporting.v_bar(y.v)
26.884












            

          

      

      

    

  

    
      
          
            
  
Managing information about influences

GTC uncertainty calculations produce a final value, a standard uncertainty, degrees of freedom, and components of uncertainty.

To assist in the display of uncertainty budgets, GTC also allows elementary uncertain numbers, and intermediate uncertain numbers, to be labelled.

If additional information about influence quantities or intermediate results is needed, unique identifiers can be used to index the stored data. These identifiers remain unique in different sessions and on different computers. So, additional details may be collected and stored for later use.

A typical use-case is to retain information about the name of the distribution associated with the uncertainty in each influence quantity value. This might be expected when reporting an uncertainty budget.

Here is a re-working of an example from the GUM (see Gauge block measurement (GUM H1)), which shows how to handle such cases.

We define a namedtuple to hold extra data and a dictionary to hold tuples for each influence, indexed by unique identifiers.

The calculation is the same as in Gauge block measurement (GUM H1). However, a label and the type of distribution associated with each influence are now stored in manifest, which is used when displaying the results.

from collections import namedtuple
from GTC import *

InfluenceData = namedtuple('InfluenceData','label, distribution')
manifest = dict()

# Lengths in nm
d0 = ureal(215,5.8,24)
d1 = ureal(0.0,3.9,5)
d2 = ureal(0.0,6.7,8)

manifest[d0.uid] = InfluenceData(label='d0',distribution='normal')
manifest[d1.uid] = InfluenceData(label='d1',distribution='normal')
manifest[d2.uid] = InfluenceData(label='d2',distribution='normal')

# Intermediate quantity 'd'
d = d0 + d1 + d2

alpha_s = ureal(11.5E-6, type_b.uniform(2E-6))
d_alpha = ureal(0.0, type_b.uniform(1E-6), 50)
d_theta = ureal(0.0, type_b.uniform(0.05), 2)

manifest[alpha_s.uid] = InfluenceData(label='alpha_s',distribution='uniform')
manifest[d_alpha.uid] = InfluenceData(label='d_alpha',distribution='uniform')
manifest[d_theta.uid] = InfluenceData(label='d_theta',distribution='uniform')

theta_bar = ureal(-0.1,0.2)
Delta = ureal(0.0, type_b.arcsine(0.5))

manifest[theta_bar.uid] = InfluenceData(label='theta_bar',distribution='normal')
manifest[Delta.uid] = InfluenceData(label='Delta',distribution='arcsine')

# Intermediate quantity 'theta'
theta = theta_bar + Delta

l_s = ureal(5.0000623E7,25,18)

manifest[l_s.uid] = InfluenceData(label='l_s',distribution='normal')

# two more intermediate steps
tmp1 = l_s * d_alpha * theta
tmp2 = l_s * alpha_s * d_theta

# Final equation for the measurement result
l = result( l_s + d - (tmp1 + tmp2), label='l')

print( "Measurement result: l={} nm".format(l) )

print("""
Components of uncertainty in l (nm)
-----------------------------------""")

format_str = "  {:>10} {!s:>10}  : {:>7.2f}"
for i in reporting.budget(l,trim=0):
    m_i = manifest[i.uid]
    print( format_str.format(m_i.label,m_i.distribution,i.u) )





The final reporting step takes the items generated by budget() and uses the uid attribute to index the additional information stored in manifest.

The output is

Measurement result: l= 50000838(32) nm

Components of uncertainty in l (nm)
-----------------------------------
         l_s     normal  :   25.00
     d_theta    uniform  :   16.60
          d2     normal  :    6.70
          d0     normal  :    5.80
          d1     normal  :    3.90
     d_alpha    uniform  :    2.89
     alpha_s    uniform  :    0.00
   theta_bar     normal  :    0.00
       Delta    arcsine  :    0.00








            

          

      

      

    

  

    
      
          
            
  
The persistence module


Functions


Functions for storing and retrieving archive files using Python pickle format are



	dump()


	load()







Functions for storing and retrieving pickled archive strings are



	dumps()


	loads()







Functions for storing and retrieving archive files using JSON format are



	dump_json()


	load_json()







Functions for storing and retrieving an archive as a JSON-formatted string are



	dumps_json()


	loads_json()







Functions for storing and retrieving archive files using XML format are



	dump_xml()


	load_xml()







Functions for storing and retrieving an archive as an XML-formatted string are



	dumps_xml()


	loads_xml()












Module contents



	
class Archive

	An Archive helps to store and retrieve uncertain numbers,
so that they can be used in later calculations.

A particular Archive object can either be used to prepare
a record of uncertain numbers for storage, or to retrieve a stored record.


Changed in version 1.5.0.




	
add(**kwargs)

	Add entries to an archive.

Each entry is given a name that identifies it within the archive.

Example

>>> a = pr.Archive()
>>> x = ureal(1,1)
>>> y = ureal(2,1)
>>> z = ureal(20,1)
>>> a.add(x=x,fred=y)

# Entries can also be added using the name as a key
>>> a['z'] = z





Here f is a file stream opened in mode ‘wb’:

>>> pr.dump(f, a)
>>> f.close()










	
static copy(ar)

	A copy constructor for archive objects.

A new Archive object is returned
containing a copy of the data in ar.

The returned archive can have more
uncertain numbers added, and can be stored.


	Parameters:

	ar (Archive) – an archive object.






New in version 1.5.0.








	
extract(*args)

	Extract uncertain numbers by name


	Parameters:

	args – names of uncertain numbers stored in the archive





If just one name is provided, a single uncertain number is returned.
Otherwise a sequence of uncertain numbers is returned.

Example

Continuing the example in add(), but in a different
Python session, f is now a file stream opened in ‘rb’ mode:

>>> a = pr.load(f)
>>> f.close()

>>> a.extract('fred')
ureal(2.0,1.0,inf)
>>> x, fred = a.extract('x','fred')
>>> x
ureal(1.0,1.0,inf)

# Entries can also be extracted using the name as a key
>>> a['z']
ureal(20.0,1.0,inf)










	
items()

	Return a list of name -to- uncertain-number pairs






	
iteritems()

	Return an iterator of name -to- uncertain-number pairs






	
iterkeys()

	Return an iterator for names






	
itervalues()

	Return an iterator for uncertain numbers






	
keys()

	Return a list of names






	
values()

	Return a list of uncertain numbers










	
dump(file, ar)

	Save an archive in a file


	Parameters:

	
	file – a file object opened in binary mode (with ‘wb’)


	ar – an Archive object








Several archives can be saved in the same file
by repeated use of this function.


Warning

The function dump is deprecated since version 1.5 and is planned for
removal in version 2.0. Support for Python pickle to store and retrieve
GTC archives is being dropped.








	
dump_json(file, ar, **kw)

	Save an archive in a file in JSON format


	Parameters:

	
	file – a file object opened in text mode (with ‘w’)


	ar – an Archive object








Keyword arguments will be passed to json.dump() [https://docs.python.org/3/library/json.html#json.dump]

Only one archive can be saved in a file.


New in version 1.3.0.








	
dump_xml(file, ar, indent=None, prefix=None, **kw)

	Save an archive in a file in XML format.


	Parameters:

	
	file – a file name or a file-like object that can be written to.


	ar – an Archive object.


	indent (int [https://docs.python.org/3/library/functions.html#int] or None) – the indentation to apply between XML elements so that the
XML document is in a pretty-printed format. The indent value must
be a non-negative integer.


	prefix (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The prefix to use for the XML namespace.








Keyword arguments will be passed to
ElementTree.write() [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.ElementTree.write].

Only one archive can be saved in a file.


New in version 1.5.0.








	
dumps(ar, protocol=5)

	Save an archive pickled in a string


	Parameters:

	
	ar – an Archive object


	protocol – encoding type








Possible values for protocol [https://docs.python.org/3/library/pickle.html#pickle-protocols] are described in the
Python documentation for the pickle [https://docs.python.org/3/library/pickle.html#module-pickle] module.

protocol=0 creates an ASCII string, but note
that many (special) linefeed characters are embedded.


Warning

The function dumps is deprecated since version 1.5 and is planned for
removal in version 2.0. Support for Python pickle to store and retrieve
GTC archives is being dropped.








	
dumps_json(ar, **kw)

	Convert an archive to a JSON string


	Parameters:

	ar – an Archive object





Keyword arguments will be passed to json.dumps() [https://docs.python.org/3/library/json.html#json.dumps]


New in version 1.3.0.








	
dumps_xml(ar, indent=None, prefix=None, **kw)

	Convert an archive to an XML document bytestring (or string).


	Parameters:

	
	ar – an Archive object.


	indent (int [https://docs.python.org/3/library/functions.html#int] or None) – the indentation to apply between XML elements so that the
XML document is in a pretty-printed format. The indent value must
be a non-negative integer.


	prefix (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The prefix to use for the XML namespace.








Keyword arguments will be passed to
ElementTree.tostring() [https://docs.python.org/3/library/xml.etree.elementtree.html#xml.etree.ElementTree.tostring].

The return type, bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or str [https://docs.python.org/3/library/stdtypes.html#str], depends on whether
an encoding keyword argument is specified and what its value is. The
default return type is bytes [https://docs.python.org/3/library/stdtypes.html#bytes].


New in version 1.5.0.








	
load(file)

	Load an archive from a file


	Parameters:

	file – a file object opened in binary mode (with ‘rb’)





Several archives can be extracted from
the same file by repeatedly calling this function.


Warning

The function load is deprecated since version 1.5 and is planned for
removal in version 2.0. Support for Python pickle to store and retrieve
GTC archives is being dropped.








	
load_json(file, **kw)

	Load an archive from a file


	Parameters:

	file – a file created by dump_json()





Keyword arguments will be passed to json.load() [https://docs.python.org/3/library/json.html#json.load]


New in version 1.3.0.








	
load_xml(file)

	Load an Archive from a file in XML format.


	Parameters:

	file – a file name or a file-like object that can be read.






New in version 1.5.0.








	
loads(s)

	Return an archive object from a pickled string


	Parameters:

	s – a string created by dumps()






Warning

The function loads is deprecated since version 1.5 and is planned for
removal in version 2.0. Support for Python pickle to store and retrieve
GTC archives is being dropped.








	
loads_json(s, **kw)

	Return an archive object by converting a JSON string


	Parameters:

	s – a string created by dumps_json()





Keyword arguments will be passed to json.loads() [https://docs.python.org/3/library/json.html#json.loads]


New in version 1.3.0.








	
loads_xml(s)

	Return an Archive object by converting an XML string.


	Parameters:

	s (bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or str [https://docs.python.org/3/library/stdtypes.html#str]) – a string created by dumps_xml().






New in version 1.5.0.










            

          

      

      

    

  

    
      
          
            
  
named-tuples

A number of namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple] class are used in GTC to return the results of calculations.


	
class VarianceAndDof(cv, df)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Values of the variance and degrees of freedom.


	
cv

	Variance.






	
df

	float [https://docs.python.org/3/library/functions.html#float]: Degrees of freedom.










	
class VarianceCovariance(rr, ri, ir, ii)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Values of variance-covariance for a complex quantity


	
rr

	float [https://docs.python.org/3/library/functions.html#float]: variance in the real component






	
ri

	float [https://docs.python.org/3/library/functions.html#float]: covariance between the real and imaginary components






	
ir

	float [https://docs.python.org/3/library/functions.html#float]: covariance between the real and imaginary components






	
ii

	float [https://docs.python.org/3/library/functions.html#float]: variance in the imaginary component










	
class StandardUncertainty(real, imag)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Standard uncertainty values of a complex quantity


	
real

	float [https://docs.python.org/3/library/functions.html#float]: standard uncertainty in the real component






	
imag

	float [https://docs.python.org/3/library/functions.html#float]: standard uncertainty in the imaginary component










	
class StandardDeviation(real, imag)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Standard deviation values of a complex quantity


	
real

	float [https://docs.python.org/3/library/functions.html#float]: standard deviation in the real component






	
imag

	float [https://docs.python.org/3/library/functions.html#float]: standard deviation in the imaginary component










	
class ComponentOfUncertainty(rr, ri, ir, ii)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Component of uncertainty values for a complex quantity


	
rr

	float [https://docs.python.org/3/library/functions.html#float]: real component with respect to real component






	
ri

	float [https://docs.python.org/3/library/functions.html#float]: real component with respect to imaginary component






	
ir

	float [https://docs.python.org/3/library/functions.html#float]: imaginary component with respect to real component






	
ii

	float [https://docs.python.org/3/library/functions.html#float]: imaginary component with respect to imaginary component










	
class Influence(label, u, uid)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: label, value, and identifier of a component of uncertainty


	
label

	str [https://docs.python.org/3/library/stdtypes.html#str]: influence quantity label






	
u

	float [https://docs.python.org/3/library/functions.html#float]: component of uncertainty






	
uid

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]: unique identifier of the uncertain number






New in version 1.3.7: The attribute uid has been added








	
class Component(uid, u)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: unique identifier and value of a component of uncertainty


	
uid

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]: unique identifier tuple






	
u

	float [https://docs.python.org/3/library/functions.html#float]: component of uncertainty










	
class CovarianceMatrix(rr, ri, ir, ii)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Values of covariance for a pair of quantities x and y


	
rr

	float [https://docs.python.org/3/library/functions.html#float]: covariance between x.real and y.real






	
ri

	float [https://docs.python.org/3/library/functions.html#float]: covariance between x.real and y.imag






	
ir

	float [https://docs.python.org/3/library/functions.html#float]: covariance between x.imag and y.real






	
ii

	float [https://docs.python.org/3/library/functions.html#float]: covariance between x.imag and y.imag










	
class CorrelationMatrix(rr, ri, ir, ii)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Correlation coefficients for a pair of quantities x and y


	
rr

	float [https://docs.python.org/3/library/functions.html#float]: correlation between x.real and y.real






	
ri

	float [https://docs.python.org/3/library/functions.html#float]: correlation between x.real and y.imag






	
ir

	float [https://docs.python.org/3/library/functions.html#float]: correlation between x.imag and y.real






	
ii

	float [https://docs.python.org/3/library/functions.html#float]: correlation between x.imag and y.imag










	
class InterceptSlope(a, b)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Values for intercept a and slope b


	
a

	UncertainReal: intercept






	
b

	UncertainReal: slope










	
class FormattedUncertainReal(x, u, df, label)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: The formatted representation of an UncertainReal number.


New in version 1.4.0.




	
x

	float [https://docs.python.org/3/library/functions.html#float]: value






	
u

	float [https://docs.python.org/3/library/functions.html#float]: standard uncertainty






	
df

	float [https://docs.python.org/3/library/functions.html#float]: degrees of freedom






	
label

	str [https://docs.python.org/3/library/stdtypes.html#str]: the label of the UncertainReal number










	
class FormattedUncertainComplex(x, u, r, df, label)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: The formatted representation of an UncertainComplex number.


New in version 1.4.0.




	
x

	complex [https://docs.python.org/3/library/functions.html#complex]: value






	
u

	StandardUncertainty: standard uncertainty






	
r

	float [https://docs.python.org/3/library/functions.html#float]: correlation coefficient between real and imaginary components






	
df

	float [https://docs.python.org/3/library/functions.html#float]: degrees of freedom






	
label

	str [https://docs.python.org/3/library/stdtypes.html#str]: the label of the UncertainComplex number












            

          

      

      

    

  

    
      
          
            
  
Linear Algebra

This module provides support for calculations using arrays containing uncertain numbers.

The shorter name la has been defined as an alias for linear_algebra,
to resolve the names of objects defined in this module.


Arrays of Uncertain Numbers

UncertainArray is a convenient container of uncertain numbers. The preferred way to create arrays is the function uarray().

An array can contain a mixture of UncertainReal,
UncertainComplex and Python numbers (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float] and complex [https://docs.python.org/3/library/functions.html#complex]).

The usual mathematical operations can be applied to an array. For instance, if A and B have the same size, they can be added A + B, subtracted A - B, etc; or a function like sqrt(A) can be applied. This vectorisation provides a succinct notation for repetitive operations
but it does not offer a significant speed advantage over Python iteration.


Note

To evaluate the product of two-dimensional arrays representing matrices, the
function matmul() should be used (for Python 3.5 and above the
built-in binary operator @ is an alternative). For example:

>>> a = la.uarray([[1.1,.5],[ureal(3,1),.5]])
>>> b = la.uarray([[5.2,ucomplex(4,1)],[.1,.1+3j]])
>>> la.matmul(a,b)
uarray([[5.7700000000000005,
         ucomplex((4.45+1.5j), u=[1.1,1.1], r=0.0, df=inf)],
        [ureal(15.650000000000002,5.2,inf),
         ucomplex((12.05+1.5j), u=[5.0,3.0], r=0.0, df=inf)]])








Classes



	UncertainArray









Arithmetic operations


Arithmetic operations are defined for arrays
(unary + and -, and binary +, - and *).
The multiplication  operator * is implemented element-wise.
For two-dimensional arrays, matrix multiplication is performed
by matmul() (since Python 3.5, the @ operator can be used).
Also, dot() evaluates the array dot product, which for
two-dimensional arrays is equivalent to matrix multiplication.

When one argument is a scalar, it is applied to each element
of the array in turn.






Mathematical operations


The standard mathematical operations defined in core
can be applied directly to an UncertainArray. An
UncertainArray is returned, containing the result
of the function applied to each element.






Functions


The functions inv(), transpose(), solve()
and det() implement the usual linear algebra operations.

The functions identity(), empty(), zeros()
full() and ones() create simple arrays.






Reporting functions


Reporting functions u_component() and
sensitivity() can be applied directly to
a pair of arrays. An UncertainArray containing
the result of applying the function to pairs of elements
will be returned.

The core GTC function result() can be used to
define elements of an array as intermediate uncertain numbers.






Array broadcasting


When binary arithmetic operations are applied to arrays, the shape
of the array may be changed for the purposes of the
calculation. The rules are as follows:


	If arrays do not have the same number of dimensions, then
dimensions of size 1 are prepended to the smaller array’s
shape




Following this, the size of array dimensions are compared and
checked for compatibility. Array dimensions are compatible when


	dimension sizes are equal, or


	one of the dimension sizes is 1




Finally, if either of the compared dimension sizes is 1, the
size of the larger dimension is used. For example:

>>> x = la.uarray([1,2])
>>> y = la.uarray([[1],[2]])
>>> print(x.shape,y.shape)  
(2,) (2, 1)
>>> x + y
uarray([[2, 3],
        [3, 4]])










Module contents



	
det(a)

	Return the matrix determinant


New in version 1.1.



Example:

>>> x = la.uarray( range(4) )
>>> x.shape = 2,2
>>> print(x)
[[0 1]
[2 3]]
>>> la.det(x)
-2.0










	
dot(lhs, rhs)

	Dot product of two arrays.

For more details see numpy.dot() [https://numpy.org/doc/stable/reference/generated/numpy.dot.html#numpy.dot].


New in version 1.1.




	Parameters:

	
	lhs – The array-like object on the left-hand side.


	rhs – The array-like object on the right-hand side.






	Returns:

	The dot product.



	Return type:

	UncertainArray










	
empty(shape)

	Return an array of shape shape containing None elements


New in version 1.1.



Example:

>>> la.empty( (2,3) )
uarray([[None, None, None],
        [None, None, None]])










	
full(shape, fill_value)

	Return an array of shape shape containing fill_value elements


New in version 1.1.



Example:

>>> la.full( (1,3),ureal(2,1) )
uarray([[ureal(2.0,1.0,inf), ureal(2.0,1.0,inf),
         ureal(2.0,1.0,inf)]])










	
identity(n)

	Return an identity array with n dimensions


New in version 1.1.



Example:

>>> la.identity(3)
uarray([[1, 0, 0],
        [0, 1, 0],
        [0, 0, 1]])










	
inv(a)

	Return the (multiplicative) matrix inverse


New in version 1.1.



Example:

>>> x = la.uarray( [[2,1],[3,4]])
>>> x_inv =la.inv(x)
>>> la.matmul(x,x_inv)
uarray([[1.0, 0.0],
        [4.440892098500626e-16, 1.0]])










	
matmul(lhs, rhs)

	Matrix product of a pair of two-dimensional arrays.

For more details see numpy.matmul [https://numpy.org/doc/stable/reference/generated/numpy.matmul.html#numpy.matmul].


New in version 1.1.




	Parameters:

	
	lhs – 2D array-like object.


	rhs – 2D array-like object.






	Returns:

	The matrix product.



	Return type:

	UncertainArray










	
ones(shape)

	Return an array of shape shape containing 1 elements


New in version 1.1.



Example:

>>> la.ones( (2,3) )
uarray([[1, 1, 1], [1, 1, 1]])










	
solve(a, b)

	Return \(x\), the solution of \(a \cdot x = b\)


New in version 1.1.




	Parameters:

	
	a – 2D UncertainArray


	b – UncertainArray






	Return type:

	UncertainArray





Example:

>>> a = la.uarray([[-2,3],[-4,1]])
>>> b = la.uarray([4,-2])
>>> la.solve(a,b)
uarray([1.0, 2.0])










	
transpose(a, axes=None)

	Array transpose

For more details see numpy.transpose() [https://numpy.org/doc/stable/reference/generated/numpy.transpose.html#numpy.transpose].


New in version 1.1.




	Parameters:

	a – The array-like object



	Returns:

	The transpose



	Return type:

	UncertainArray










	
uarray(array, label=None, names=None)

	Create an array of uncertain numbers.

For an overview on how to use an UncertainArray see Examples using UncertainArray.


New in version 1.1.




Attention

Requires numpy \(\geq\) v1.13.0 to be installed.




	Parameters:

	
	array – An array-like object containing int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex]
UncertainReal or UncertainComplex elements.


	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – A label to assign to the array. This label does not
change labels previously assigned to array elements.


	names (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The field names to use to create a
structured array [https://numpy.org/doc/stable/user/basics.rec.html#structured-arrays].






	Returns:

	An UncertainArray.





Examples:


Create an amps and a volts array and then calculate the resistances

>>> amps = la.uarray([ureal(0.57, 0.18), ureal(0.45, 0.12), ureal(0.68, 0.19)])
>>> volts = la.uarray([ureal(10.3, 1.3), ureal(9.5, 0.8), ureal(12.6, 1.9)])
>>> resistances = volts / amps
>>> resistances
uarray([ureal(18.070175438596493,6.145264246839438,inf),
        ureal(21.11111111111111,5.903661880050747,inf),
        ureal(18.52941176470588,5.883187720636909,inf)])





Create a Structured array [https://numpy.org/doc/stable/user/basics.rec.html#structured-arrays], with the names 'amps' and 'volts',
and then calculate the resistances.

>>> data = la.uarray([(ureal(0.57, 0.18), ureal(10.3, 1.3)),
...                (ureal(0.45, 0.12), ureal(9.5, 0.8)),
...                (ureal(0.68, 0.19), ureal(12.6, 1.9))], names=['amps', 'volts'])
>>> resistances = data['volts'] / data['amps']
>>> resistances
uarray([ureal(18.070175438596493,6.145264246839438,inf),
        ureal(21.11111111111111,5.903661880050747,inf),
        ureal(18.52941176470588,5.883187720636909,inf)])













	
zeros(shape)

	Return an array of shape shape containing 0 elements


New in version 1.1.



Example:

>>> la.zeros( (2,3) )
uarray([[0, 0, 0],
        [0, 0, 0]])










	
class UncertainArray(array, dtype=None, label=None)

	An UncertainArray can contain elements of type
int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex],
UncertainReal or UncertainComplex.

Do not instantiate this class directly. Use uarray() instead.

Base: numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray]


New in version 1.1.




	
conjugate()

	The result of applying the attribute conjugate to each element in the array.

Example:

>>> a = la.uarray([ucomplex(1.2-0.5j, 0.6), ucomplex(3.2+1.2j, (1.4, 0.2)), ucomplex(1.5j, 0.9)])
>>> a.conjugate()
uarray([ucomplex((1.2+0.5j), u=[0.6,0.6], r=0.0, df=inf),
        ucomplex((3.2-1.2j), u=[1.4,0.2], r=0.0, df=inf),
        ucomplex((0-1.5j), u=[0.9,0.9], r=0.0, df=inf)])






	Return type:

	UncertainArray










	
dof()

	The result of dof() for each element in the array.

Example:

>>> a = la.uarray([ureal(6, 2, df=3), ureal(4, 1, df=4), ureal(5, 3, df=7), ureal(1, 1)])
>>> a.dof()
uarray([3.0, 4.0, 7.0, inf])






	Return type:

	UncertainArray










	
property imag

	The result of applying the attribute imag to each
element in the array.

Example:

>>> a = la.uarray([ucomplex(1.2-0.5j, 0.6), ucomplex(3.2+1.2j, (1.4, 0.2)), ucomplex(1.5j, 0.9)])
>>> a.imag
uarray([ureal(-0.5,0.6,inf), ureal(1.2,0.2,inf),
        ureal(1.5,0.9,inf)])






	Return type:

	UncertainArray










	
property label

	The label that was assigned to the array when it was created.

Example:

>>> current = la.uarray([ureal(0.57, 0.18), ureal(0.45, 0.12), ureal(0.68, 0.19)], label='amps')
>>> current.label
'amps'






	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
property r

	The result of applying the attribute r to  each element in the array.

Example:

>>> a = la.uarray([ucomplex(1.2-0.5j, (1.2, 0.7, 0.7, 2.2)),
...                ucomplex(-0.2+1.2j, (0.9, 0.4, 0.4, 1.5))])
>>> a.r
uarray([0.43082021842766455, 0.34426518632954817])






	Return type:

	UncertainArray










	
property real

	The result of applying the attribute real to each
element in the array.

Example:

>>> a = la.uarray([ucomplex(1.2-0.5j, 0.6), ucomplex(3.2+1.2j, (1.4, 0.2)), ucomplex(1.5j, 0.9)])
>>> a.real
uarray([ureal(1.2,0.6,inf), ureal(3.2,1.4,inf),
        ureal(0.0,0.9,inf)])






	Return type:

	UncertainArray










	
uncertainty()

	The result of uncertainty() for each element in the array.

Example:

>>> r = la.uarray([ureal(0.57, 0.18), ureal(0.45, 0.12), ureal(0.68, 0.19)])
>>> r.uncertainty()
uarray([0.18, 0.12, 0.19])
>>> c = la.uarray([ucomplex(1.2-0.5j, 0.6), ucomplex(3.2+1.2j, (1.4, 0.2)), ucomplex(1.5j, 0.9)])
>>> c.uncertainty()
uarray([StandardUncertainty(real=0.6, imag=0.6),
       StandardUncertainty(real=1.4, imag=0.2),
       StandardUncertainty(real=0.9, imag=0.9)])






	Return type:

	UncertainArray










	
value()

	The result of value() for each element in the array.

Example:

>>> a = la.uarray([0.57, ureal(0.45, 0.12), ucomplex(1.1+0.68j, 0.19)])
>>> a.value()
uarray([0.57, 0.45, (1.1+0.68j)])






	Return type:

	UncertainArray










	
variance()

	The result of variance() for each element in the array.

Example:

>>> r = la.uarray([ureal(0.57, 0.18), ureal(0.45, 0.12), ureal(0.68, 0.19)])
>>> r.variance()
uarray([0.0324, 0.0144, 0.0361])
>>> c = la.uarray([ucomplex(1.2-0.5j, 0.6), ucomplex(3.2+1.2j, (1.5, 0.5)), ucomplex(1.5j, 0.9)])
>>> c.variance()
uarray([VarianceCovariance(rr=0.36, ri=0.0, ir=0.0, ii=0.36),
        VarianceCovariance(rr=2.25, ri=0.0, ir=0.0, ii=0.25),
        VarianceCovariance(rr=0.81, ri=0.0, ir=0.0, ii=0.81)])






	Return type:

	UncertainArray

















            

          

      

      

    

  

    
      
          
            
  
Formatting Uncertain Numbers

Formatting an uncertain number is useful for display purposes.
The number of significant digits for the value and the uncertainty
can be controlled, based on the uncertainty.
The number of digits displayed after the decimal point for the degrees of freedom
and the correlation coefficient can also be specified.

Three functions help to format and display uncertain numbers:


	create_format()


	apply_format()


	to_string()





Generating strings

As an example, consider the following uncertain number

>>> un = ureal(3.14159e-3, 2.71828e-4, 9.876)





We create an object to control the format using the
create_format() function

>>> fmt = create_format(un)





The fmt object contains formatting specifications

>>> fmt
Format(format_spec='.2f', df_precision=0, r_precision=3)





Fixed-point notation, f, is used. The .2 indicates that 2 significant digits will be retained in the uncertainty
and the value will be displayed using the same number of significant digits.
The degrees of freedom will be truncated to a precision of 0 digits after the decimal point,
and the correlation coefficient will be rounded to a precision of 3 digits
after the decimal point.

Note that the meaning of the .2f field in the format_spec is different
from the usual Python interpretation.
In GTC, this field specifies the number of significant digits of the uncertainty
that will be displayed, which also affects the number of digits displayed for the value.

There are two ways to use a format specification to display the string representation of an uncertain number.
The first, is to use the builtin format() [https://docs.python.org/3/library/functions.html#format] function

>>> '{:.2f}'.format(un)
'0.00314(27)'





The second is to use the to_string() function

>>> to_string(un, fmt)
'0.00314(27)'





Scientific notation is also supported. For example,

>>> '{:e}'.format(un)
'3.14(27)e-03'





Alternatively, the create_format() and
to_string() functions can be used

>>> fmt = create_format(un, type='e')
>>> to_string(un, fmt)
'3.14(27)e-03'





The order of characters in the format_spec is important. Python supports
a specific grammar when using the format() [https://docs.python.org/3/library/functions.html#format] function (see Format Specification Mini-Language [https://docs.python.org/3/library/string.html#formatspec]).
The GTC-specific field—style—must occur after the builtin
fields. The equivalent format-specification grammar for GTC is:


[[fill]align][sign][#][0][width][grouping][.digits][type][style]
Note the use of digits (not precision) and style (there are two styles:
L (\(\LaTeX\)) and U (Unicode)).

The following examples illustrate for an uncertain number.

Use 3 significant digits and scientific notation

>>> fmt = create_format(un, digits=3, type='e')
>>> to_string(un, fmt)
'3.142(272)e-03'
>>> '{:.3e}'.format(un)
'3.142(272)e-03'





Use 1 significant digit, scientific notation, and unicode style

>>> fmt = create_format(un, digits=1, type='e', style='U')
>>> to_string(un, fmt)
'3.1(3)×10⁻³'
>>> '{:.1eU}'.format(un)
'3.1(3)×10⁻³'





Use 4 significant digits, scientific notation, and \(\LaTeX\) style

>>> fmt = create_format(un, digits=4, type='e', style='L')
>>> to_string(un, fmt)
'3.1416\\left(2718\\right)\\times10^{-3}'
>>> '{:.4eL}'.format(un)
'3.1416\\left(2718\\right)\\times10^{-3}'





In this case, the text output may not be easy to interpret in Python, but
it becomes \(3.1416\left(2718\right)\times10^{-3}\) when
rendered in a \(\LaTeX\) document.

Fill with *, align right >, show a + sign with positive values, a width of 20 characters and 1 significant digit

>>> fmt = create_format(un, fill='*', align='>', sign='+', width=20, digits=1)
>>> to_string(un, fmt)
'**********+0.0031(3)'
>>> '{:*>+20.1}'.format(un)
'**********+0.0031(3)'







Generating formatted attributes

The apply_format() function formats an uncertain number.
The returned object is a namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple] with numerical attributes that have been manipulated to have the specified number of digits for: value, uncertainty, degrees of freedom, and correlation coefficient (for uncertain complex numbers).

>>> fmt = create_format(un)
>>> formatted = apply_format(un, fmt)
>>> formatted
FormattedUncertainReal(x=0.00314, u=0.00027, df=9.0, label=None)
>>> formatted.x
0.00314





We can specify that 3 significant digits will be used for the uncertainty (and value) and
truncate the degrees of freedom to 2 digits of precision

>>> fmt = create_format(un, digits=3, df_precision=2)
>>> formatted = apply_format(un, fmt)
>>> formatted
FormattedUncertainReal(x=0.003142, u=0.000272, df=9.87, label=None)
>>> formatted.x
0.003142
>>> formatted.df
9.87





The following functions are available.


	
apply_format(un, fmt)

	Apply the format to an uncertain number.


New in version 1.4.0.




	Parameters:

	
	un (UncertainReal or UncertainComplex) – An uncertain number.


	fmt (Format) – The format to apply to un.






	Return type:

	FormattedUncertainReal or FormattedUncertainComplex






Note

Although the format type may be specified as '%', this will be interpreted as 'f' and the value and uncertainty will
not be multiplied by 100. See create_format() for more details.








	
create_format(obj, digits=None, df_precision=None, r_precision=None, style=None, **kwargs)

	Create a format specification.

Formatting an uncertain number rounds the value and the uncertainty to the
specified number of significant digits (based on the uncertainty component),
and truncates the degrees of freedom and rounds the correlation coefficient
to the specified precision (the number of digits after the decimal point).


New in version 1.4.0.




	Parameters:

	
	obj (float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex], UncertainReal,
UncertainComplex or StandardUncertainty) – An object to use to create the format specification. If an
UncertainReal or an UncertainComplex,
then the uncertainty component is used when creating the format.
Otherwise this function assumes that the uncertainty component was
passed in as obj.


	digits (int [https://docs.python.org/3/library/functions.html#int]) – The number of significant digits in the uncertainty
component to retain. Default is 2.


	df_precision (int [https://docs.python.org/3/library/functions.html#int]) – The number of digits that should be kept after the
decimal point for the degrees of freedom. The value is truncated.
Default is 0.


	r_precision (int [https://docs.python.org/3/library/functions.html#int]) – The number of digits that should be kept after the
decimal point for the correlation coefficient. The value is rounded.
Default is 3.


	style (str [https://docs.python.org/3/library/stdtypes.html#str]) – The style to use when formatting an uncertain number as a
string. Can be either 'L' (\(\LaTeX\)) or 'U' (Unicode).
When a style is used, the + sign and any leading 0’s are removed from
the exponent, for example, e+06 becomes \(10^{6}\) instead of
\(10^{+06}\). Also, if the exponential term is equal to e+00
then the exponential term is completely removed (i.e., it becomes an
empty string instead of \(10^{+00}\)). Default is to not use
styling.


	**kwargs – All additional keyword arguments correspond to the format-specification
fields (see Format Specification Mini-Language [https://docs.python.org/3/library/string.html#formatspec]). These fields are used when formatting
an uncertain number as a string.


	fill (str [https://docs.python.org/3/library/stdtypes.html#str]): Can be any character, except for
'{' or '}'.


	align (str [https://docs.python.org/3/library/stdtypes.html#str]): Can be one of '<', '>',
'=' or '^'.


	sign (str [https://docs.python.org/3/library/stdtypes.html#str]): Can be one of '+', '-' or
' ' (i.e., a space).


	hash (bool [https://docs.python.org/3/library/functions.html#bool]): Whether to include the # field.


	zero (bool [https://docs.python.org/3/library/functions.html#bool]): Whether to include the 0 field.


	width (int [https://docs.python.org/3/library/functions.html#int]): The total width of the string.


	grouping (str [https://docs.python.org/3/library/stdtypes.html#str]): Can be one of ',' or '_'.


	type (str [https://docs.python.org/3/library/stdtypes.html#str]): Can be one of 'e', 'E', 'f',
'F', 'g', 'G', 'n' or '%'.





Note

The '%' type applies to both the value and standard uncertainty.
In keeping with the behaviour of '%' for floats, the value and
standard uncertainty will be multiplied by 100 and displayed in
fixed 'f' format followed by a percent sign.




Note

The precision field is treated differently for uncertain
numbers in GTC. The digits keyword argument (number of
significant digits) is used instead of the typical concept
of precision (number of digits, either after the decimal
place or in total depending on the value of type).




Note

If the uncertainty component is 0 then the string representation
of the uncertain number does not include the uncertainty in
parentheses and digits is equivalent to precision.

>>> ur = ureal(3.1415926536, 0)
>>> '{:.5f}'.format(ur)
'3.14159'














	Return type:

	Format










	
to_string(obj, fmt)

	Convert a numeric object to a string.


New in version 1.4.0.




	Parameters:

	
	obj (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], complex [https://docs.python.org/3/library/functions.html#complex],
UncertainReal, UncertainComplex
or StandardUncertainty) – A numeric object.


	fmt (Format) – The format to use to convert obj to a string.
See create_format() for more details.






	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
class Format(**kwargs)

	Format specification for an uncertain number.

Do not instantiate this class directly. The proper way to create a
Format object is via the create_format() function.

This class does not have any user-facing attributes. It is only meant to
be passed as an argument to apply_format() or to_string().


New in version 1.4.0.











            

          

      

      

    

  

    
      
          
            
  
Examples





GUM Appendices



	Gauge block measurement (H1)

	Resistance and reactance measurement (H2)

	Calibration of a thermometer (H3)







Linear calibration



	Using the results of linear regression

	Straight-line calibration functions

	Calibration of a simple pressure sensor







EURACHEM / CITAC Guide Examples



	Preparation of a Calibration Standard (A1)

	Standardising a Sodium Hydroxide Solution (A2)

	An Acid/Base Titration (A3)

	Cadmium released from ceramic-ware (A5)







Arrays of uncertain numbers



	Examples using uarray









            

          

      

      

    

  

    
      
          
            
  
Gauge block measurement (GUM H1)

An example from Appendix H1 of the GUM [1].



	Code


	Explanation






Code

from __future__ import print_function
from GTC import *

print("""
-------------------------------
Example from Appendix H1 of GUM
-------------------------------
""")

# Lengths are in nm
d0 = ureal(215,5.8,24,label='d0')  
d1 = ureal(0.0,3.9,5,label='d1')  
d2 = ureal(0.0,6.7,8,label='d2')

# Intermediate quantity 'd'
d = d0 + d1 + d2

alpha_s = ureal(11.5E-6, type_b.uniform(2E-6),label='alpha_s')
d_alpha = ureal(0.0, type_b.uniform(1E-6), 50,label='d_alpha')
d_theta = ureal(0.0, type_b.uniform(0.05), 2,label='d_theta')

theta_bar = ureal(-0.1,0.2,label='theta_bar')
Delta = ureal(0.0, type_b.arcsine(0.5),label='Delta')

# Intermediate quantity 'theta'
theta = theta_bar + Delta

l_s = ureal(5.0000623E7,25,18,label='l_s')   

# two more intermediate steps
tmp1 = l_s * d_alpha * theta
tmp2 = l_s * alpha_s * d_theta

# Final equation for the measurement result
l = result( l_s + d - (tmp1 + tmp2), label='l')

print( "Measurement result for l={}".format(l) )

print("""
Components of uncertainty in l (nm)
-----------------------------------""")

for i in reporting.budget(l):
    print( "  {!s}: {:G}".format(i.label,i.u) )







Explanation

The measurand is the length of an end-gauge at \(20\,^\circ\mathrm{C}\). The measurement equation is [2]


\[l = l_\mathrm{s} + d - l_\mathrm{s}(\delta_\alpha \theta + \alpha_\mathrm{s} \delta_\theta) \;,\]

where



	\(l_\mathrm{s}\) - the length of the standard


	\(d\) - the difference in length between the standard and the end-gauge


	\(\delta_\alpha\) - the difference between coefficients of thermal expansion for the standard and the end-gauge


	\(\theta\) - the deviation in temperature from \(20\,^\circ\mathrm{C}\)


	\(\alpha_\mathrm{s}\) - the coefficient of thermal expansion for the standard


	\(\delta_\theta\) - the temperature difference between the standard and the end-gauge







The calculation proceeds in stages. First, three inputs are defined:



	the length difference measurement(d0) using the comparator, which is the arithmetic mean of several indications;


	an estimate of comparator random errors (d1) and


	an estimate of comparator systematic errors (d2).







These are used to define the intermediate result d

d0 = ureal(215,5.8,24,label='d0')
d1 = ureal(0.0,3.9,5,label='d1')
d2 = ureal(0.0,6.7,8,label='d2')

# Intermediate quantity 'd'
d = d0 + d1 + d2





Then terms are introduced to account for temperature variability and thermal properties of the gauge blocks.

In particular, the quantity \(\theta\) is defined in terms of two other input quantities


\[\theta = \bar{\theta} + \Delta\]

where



	\(\bar{\theta}\) is the mean deviation of the test-bed temperature from \(20\,^\circ\mathrm{C}\)


	\(\Delta\) is a cyclical error in the test-bed temperature







In defining these inputs, functions type_b.uniform() and type_b.arcsine() convert the widths of particular error distributions into standard uncertainties [3].

alpha_s = ureal( 11.5E-6, type_b.uniform(2E-6), label='alpha_s' )
d_alpha = ureal(0.0, type_b.uniform(1E-6), 50, label='d_alpha')
d_theta = ureal(0.0, type_b.uniform(0.05), 2, label='d_theta')

theta_bar = ureal(-0.1,0.2, label='theta_bar')
Delta = ureal(0.0, type_b.arcsine(0.5), label='Delta' )

# Intermediate quantity 'theta'
theta = theta_bar + Delta





The length of the standard gauge block is given in a calibration report

l_s = ureal(5.0000623E7,25,18,label='ls')





two more intermediate results, representing thermal errors, are then

# two more intermediate steps
tmp1 = l_s * d_alpha * theta
tmp2 = l_s * alpha_s * d_theta





Finally, the length of the gauge block is evaluated

# Final equation for the measurement result
l = result( l_s + d - (tmp1 + tmp2), label='l')





The script then evaluates the measurement result

print( "Measurement result for l={}".format(l) )





which displays

Measurement result for l=50000838(32)





and the following commands display the components of uncertainty for l, due to each influence:

print("""
Components of uncertainty in l (nm)
-----------------------------------""")

for l_i,u_i in reporting.budget(l):
    print( "  {!s}: {:G}".format(l_i,u_i) )





The output is

Components of uncertainty in l (nm)
-----------------------------------
  ls: 25
  d_theta: 16.599
  d2: 6.7
  d0: 5.8
  d1: 3.9
  d_alpha: 2.88679
  alpha_s: 0
  theta_bar: 0
  Delta: 0





Footnotes



[1]
BIPM and IEC and IFCC and ISO and IUPAC and IUPAP and OIML,
Evaluation of measurement data - Guide to the expression of uncertainty in measurement JCGM 100:2008 (GUM 1995 with minor corrections), (2008) http://www.bipm.org/en/publications/guides/gum [http://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461]



[2]
In fact, the GUM uses more terms to calculate the uncertainty than are defined: quantities \(d\) and \(\theta\) depend on more than one influence quantity.



[3]
ureal creates a new uncertain real number. It takes a standard uncertainty as its second argument.







            

          

      

      

    

  

    
      
          
            
  
Resistance and reactance measurement (GUM H2)

An example from Appendix H2 of the GUM [1].



	Code


	Explanation


	Calculating the expanded uncertainty










Code

from __future__ import print_function
from GTC import *

print("""
-------------------------------
Example from Appendix H2 of GUM
-------------------------------
""")

V = ureal(4.999,3.2E-3,independent=False)      # volt
I = ureal(19.661E-3,9.5E-6,independent=False)  # amp
phi = ureal(1.04446,7.5E-4,independent=False)  # radian

set_correlation(-0.36,V,I)
set_correlation(0.86,V,phi)
set_correlation(-0.65,I,phi)

R = result( V * cos(phi) / I )
X = result( V * sin(phi) / I )
Z = result( V / I )

print('R = {}'.format(R) )
print('X = {}'.format(X) )
print('Z = {}'.format(Z) )
print
print('Correlation between R and X = {:+.2G}'.format( get_correlation(R,X) ) )
print('Correlation between R and Z = {:+.2G}'.format( get_correlation(R,Z) ) )
print('Correlation between X and Z = {:+.2G}'.format( get_correlation(X,Z) ) )

print("""
(These are not exactly the same values reported in the GUM.
There is some numerical round-off error in the GUM's calculations.)
""")








Explanation

Several quantities associated with an electrical component in an AC electrical circuit are of interest here. Measurements of the resistance \(R\), the reactance \(X\) and the magnitude of the impedance \(|Z|\) are required. These can be obtained by measuring voltage \(V\), current \(I\) and phase angle \(\phi\) and then using the measurement equations:


\[ \begin{align}\begin{aligned}R = V I \cos \phi\\X = V I  \sin \phi\\|Z| = V  I\end{aligned}\end{align} \]

Five repeat measurements of each quantity are performed. The mean values, and associated uncertainties (type-A analysis) provide estimates of voltage, current and phase angle. The correlation coefficients between pairs of estimates is also calculated.

This information is used to define three inputs to the calculation and assign correlation coefficients (the additional argument independent=False is required for set_correlation to be used).

V = ureal(4.999,3.2E-3,independent=False)      # volt
I = ureal(19.661E-3,9.5E-6,independent=False)  # amp
phi = ureal(1.04446,7.5E-4,independent=False)  # radian

set_correlation(-0.36,V,I)
set_correlation(0.86,V,phi)
set_correlation(-0.65,I,phi)





Estimates of the three required quantities are then

R = result( V * cos(phi) / I )
X = result( V * sin(phi) / I )
Z = result( V / I )





Results are displayed by

print 'R = {}'.format(R)
print 'X = {}'.format(X)
print 'Z = {}'.format(Z)
print
print 'Correlation between R and X = {:+.2G}'.format( get_correlation(R,X) )
print 'Correlation between R and Z = {:+.2G}'.format( get_correlation(R,Z) )
print 'Correlation between X and Z = {:+.2G}'.format( get_correlation(X,Z) )





The output is

R = 127.732(70)
X = 219.85(30)
Z = 254.26(24)

Correlation between R and X = -0.59
Correlation between R and Z = -0.49
Correlation between X and Z = +0.99






Calculating the expanded uncertainty

The expanded uncertainties for R, X and Z are not evaluated in the GUM, because the Welch-Satterthwaite equation for the effective degrees of freedom is invalid when input estimates are correlated. We created V, I and phi with infinite degrees of freedom, the default).

However, an alternative calculation is applicable in this case [2]. There are two different ways to carry out the calculation in GTC. One uses type_a.multi_estimate_real(), the other uses multiple_ureal().

multiple_ureal() creates several elementary uncertain real numbers that are associated with each other (called an ensemble in GTC). The documentation shows this applied to the GUM H2 example.

type_a.multi_estimate_real(), performs a type-A analysis on raw data (three sets of five readings) and returns an ensemble of elementary uncertain real numbers. The documentation shows this applied to the GUM H2 example.


Note

The impedance calculation can also be treated as a complex-valued problem, so there are other functions that can do data processing of uncertain complex numbers. The documentation for type_a.multi_estimate_complex() and multiple_ucomplex() both use GUM H2 as an example.





[1]
BIPM and IEC and IFCC and ISO and IUPAC and IUPAP and OIML,
Evaluation of measurement data - Guide to the expression of uncertainty in measurement JCGM 100:2008 (GUM 1995 with minor corrections), (2008) http://www.bipm.org/en/publications/guides/gum [http://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461]



[2]
R Willink, ‘A generalization of the Welch-Satterthwaite formula for use with correlated uncertainty components’, Metrologia 44 (2007) 340-349, Sec. 4.1








            

          

      

      

    

  

    
      
          
            
  
Calibration of a thermometer (GUM H3)

An example from Appendix H3 of the GUM [1].



	Code


	Explanation


	Other error models


	Known variance


	Systematic error in the standard temperature










Code

from __future__ import print_function
from GTC import *

print("""
-------------------------------
Example from Appendix H3 of GUM
-------------------------------
""")
# Thermometer readings (degrees C)
t = (21.521,22.012,22.512,23.003,23.507,23.999,24.513,25.002,25.503,26.010,26.511)

# Observed differences with calibration standard (degrees C)
b = (-0.171,-0.169,-0.166,-0.159,-0.164,-0.165,-0.156,-0.157,-0.159,-0.161,-0.160)

# Arbitrary offset temperature (degrees C)
t_0 = 20.0

# Calculate the temperature relative to t_0
t_rel = [ t_k - t_0 for t_k in t ]

# Least-squares regression
cal = type_a.line_fit(t_rel,b)
print( cal )
print

# Apply correction at 30 C
b_30 = cal.intercept + cal.slope*(30.0 - t_0)

print("Correction at 30 C: {}".format(b_30))







Explanation

A thermometer is calibrated by comparing 11 readings \(t_k\)  with corresponding values of a temperature reference standard \(t_{\mathrm{R}\cdot k}\).

The readings and the differences \(b_k = t_{\mathrm{R}\cdot k} - t_k\) are used to calculate the slope and intercept of a calibration line, which can be used to estimate a temperature correction for a thermometer reading, including the uncertainty.

A linear model of the thermometer is assumed,


\[B_k = Y_1 + Y_2(t_k - t_0) + E_k \;\]

An arbitrary fixed temperature \(t_0\) is chosen for convenience, \(t_k\) is the temperature indicated by the thermometer and \(B_k\) is the correction that should be applied to a reading. The constants \(Y_1\) and \(Y_2\) define a linear relationship between the indicated temperature and the correction \(B_k\) (\(Y_1\) and \(Y_2\) correspond to the intercept and slope).

The accuracy of the temperature standard is high, so values of \(t_{\mathrm{R}\cdot k}\) have no significant error. However, the estimates obtained for the difference between the actual temperature and the indicated temperature are \(b_k\) are subject to error.

Estimates of the intercept and slope are obtained by least-squares regression on \(b_k\) and \(t_k\). The uncertainty in these estimates is due to random fluctuations in the measurement system (represented by \(E_k\)) .

In the GTC calculation, data are contained in a pair of sequences. The function type_a.line_fit() performs the regression.

# Thermometer readings (degrees C)
t = (21.521,22.012,22.512,23.003,23.507,23.999,24.513,25.002,25.503,26.010,26.511)

# Observed differences with calibration standard (degrees C)
b = (-0.171,-0.169,-0.166,-0.159,-0.164,-0.165,-0.156,-0.157,-0.159,-0.161,-0.160)

# Arbitrary offset temperature (degrees C)
t_0 = 20.0

# Calculate the temperature relative to t_0
t_rel = [ t_k - t_0 for t_k in t ]

# Least-squares regression
cal = type_a.line_fit(t_rel,b)
print cal
print





The fitted calibration line can be used to calculate a correction for a reading of 30 C

# Apply correction at 30 C
b_30 = cal.intercept + cal.slope*(30.0 - t_0)

print("Correction at 30 C: {}".format(b_30))





The results agree with the numbers reported in the GUM

-------------------------------
Example from Appendix H3 of GUM
-------------------------------

Ordinary Least-Squares Results:

  Intercept: -0.1712(29)
  Slope: 0.00218(67)
  Correlation: -0.93
  Sum of the squared residuals: 0.000110096583109
  Number of points: 11

Correction at 30 C: -0.1494(41)







Other error models

In GUM appendix H.3.6, two alternative scenarios are considered for the thermometer calibration.


Known variance

In the first, the variance of the b_k data is assumed known from prior calibrations.

There are two ways to do this regression problem with GTC.

One way is to define a sequence with the uncertainties of the respective b_k observations. This sequence can be used with type_a.line_fit_wls() to obtain the slope and intercept.
The other way is to define a sequence of uncertain real numbers representing the b_k data and use the function type_b.line_fit()

u_b = 0.001 # an arbitrary value, just as an example
cal = type_b.line_fit(t_rel,[ureal(b_i,u_b) for b_i in b])





in either case, the results obtained can be used as above to evaluate corrections.



Systematic error in the standard temperature

The other scenario considers a systematic error that causes all b_k values to have some constant offset error. A type-A analysis can still be used on the data to evaluate the contribution to uncertainty due to system instability. However, the systematic error cannot be evaluated by a statistical analysis (it is constant).

This can be handled by combining the results from both type-A and type-B regression analyses.

First, we define a sequence of uncertain real numbers for the b_k data, in which a term representing the systematic error is included

E_sys = ureal(0,0.005)
b_sys = [b_i + E_sys for b_i in b]
cal_b = type_b.line_fit(t_rel,b_sys)
print cal_b





Note that E_sys, which represents the systematic error, is defined outside the list and then added to each list element. The results are

Ordinary Least-Squares Results:

  Intercept: -0.1712(50)
  Slope: 0.00218269773988727725(16)
  Correlation: -1
  Sum of the squared residuals: 0.000110096583109
  Number of points: 11





The standard uncertainty in the slope is effectively zero (the small non-zero value can be attributed to numerical round-off error), as expected: an error in the temperature standard shifts all values of b_k by the same amount, so the slope does not change.

Second, a type-A regression analysis is done on the same b_k data sequence (this processes the uncertain-number values, but ignores the uncertainies)

cal_a = ta.line_fit(t_rel,b_sys)
print cal_a





The results are

Ordinary Least-Squares Results:

  Intercept: -0.1712(29)
  Slope: 0.00218(67)
  Correlation: -0.93
  Sum of the squared residuals: 0.000110096583109
  Number of points: 11





Notice that the slope and intercept are the same, but not the uncertainties or the correlation coefficient.

In a final step, the results are combined

intercept = ta.merge(cal_a.intercept,cal_b.intercept)
slope = ta.merge(cal_a.slope,cal_b.slope)

print( repr(intercept) )
print( repr(slope) )





which displays

ureal(-0.17120379013135004,0.00576893138292676,145.37964721007157)
ureal(0.0021826977398872894,0.0006679387732278323,9.0)





Notice that neither of the estimates, or the standard uncertainty in the slope, change as a result of merging. However, the standard uncertainty of the intercept does increase, due to uncertainty about the systematic error, as described in H.3.6 in the GUM.

Footnotes



[1]
BIPM and IEC and IFCC and ISO and IUPAC and IUPAP and OIML,
Evaluation of measurement data - Guide to the expression of uncertainty in measurement JCGM 100:2008 (GUM 1995 with minor corrections), (2008) http://www.bipm.org/en/publications/guides/gum [http://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461]








            

          

      

      

    

  

    
      
          
            
  
Linear Regression Results



	Example


	Estimates of the slope and intercept


	The response


	A predicted future response


	Estimating the stimulus from observations of the response









Conventional least-squares regression of a line to a set of data estimates the parameters of a linear model (slope and intercept) The best-fit line is sometimes called a calibration line.


Example

Linear regression is performed with x data, that are considered to be error-free stimuli, and y data that are observations subject to noise (random errors)

>>> x = [3, 7, 11, 15, 18, 27, 29, 30, 30, 31, 31, 32, 33, 33, 34, 36,
...     36, 36, 37, 38, 39, 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 50]
>>> y = [5, 11, 21, 16, 16, 28, 27, 25, 35, 30, 40, 32, 34, 32, 34, 37,
...     38, 34, 36, 38, 37, 36, 45, 39, 41, 40, 44, 37, 44, 46, 46, 49, 51]

>>> fit = type_a.line_fit(x,y)





The object LineFitOLS (returned by type_a.line_fit()) contains the results of the regression and can be used in different ways.


Estimates of the slope and intercept

Least-squares regression assumes that a model of the system is


\[Y = \alpha + \beta \, x + E \;,\]

where \(\alpha\) and \(\beta\) are unknown parameters, \(E\) is a random error with zero mean and unknown variance \(\sigma^2\), \(x\) is the independent (stimulus) variable and \(Y\) is the response.

Least-squares regression returns the fit object, which holds uncertain numbers representing \(\alpha\) and \(\beta\):

>>> a = fit.intercept
>>> a
ureal(3.82963319758869...,1.768447327250652...,31)
>>> b = fit.slope
>>> b
ureal(0.903643210579323...,0.05011897355918200...,31)
>>> get_correlation(a,b)
-0.948124070891915...







The response

The uncertain numbers a and b can be used to estimate the response to a particular stimulus, say \(x = 21.5\), in the absence of noise:

>>> y = a + 21.5 * b
>>> y
ureal(23.2579622250441...,0.821607058888506...,31.0)





The result y is an estimate of \(\alpha + 21.5 \times \beta\). It is subject to uncertainty because the regression used a sample of data.



A predicted future response

A single future indication in response to a given stimulus may also be of interest. Again, say \(x = 21.5\),

>>> y0 = fit.y_from_x(21.5)
>>> y0
ureal(23.2579622250441...,3.332409257957110...,31.0)





The value here is the same as above (because the stimulus is the same), but the uncertainty is much larger, reflecting the variability of single indications as well as the underlying uncertainty in the intercept and slope.



Estimating the stimulus from observations of the response

Another possibility is that several indications of the response to a steady stimulus are collected. This sample of data may be used to estimate the stimulus [1].

Suppose three observations were collected [31.4, 29.3, 27.1]

>>> x0 = fit.x_from_y( [31.4, 29.3, 27.1] )
>>> x0
ureal(28.14942133275184...,2.175140873342519...,31.0)





x0 is an estimate of the stimulus based on the observations, but also taking into account the variability in the y data used earlier in the regression.

Footnotes



[1]
This scenario is sometimes called calibration. The response of an instrument to a number of different reference stimuli is observed and a calibration curve is calculated. The curve is then used in the opposite sense, to convert observations of the instrument response into estimates of the stimulus applied.








            

          

      

      

    

  

    
      
          
            
  
Straight-line calibration functions



	Example 1: equal weights


	Application: an additional y observation after regression


	Forward evaluation: an additional x value






	Example 2: unequal weights


	Application: an additional y observation after regression






	Example 3: uncertainty in x and y


	Example 4: relative uncertainty in y


	Example 5: unknown uncertainty in y


	Application: an additional response


	Forward evaluation: an additional stimulus









This section uses straight-line least-squares regression algorithms to obtain calibration functions and then shows some uses of those functions. Each example uses a small sample of x-y observation pairs for regression to obtain a calibration function, together with information about the variability of the data. No context is given about the measurement; these examples have been selected from a draft British standard on the use of straight-line calibration functions [1].

In some examples, we show how results can be used to estimate a stimulus value x, when given additional observations of the response y, or a future response y to a given stimulus x.


Example 1: equal weights

A series of six pairs of x-y observations have been collected.

The data sequences x and y and a sequence of uncertainties in the \(y\) values are

>>> x = [1,2,3,4,5,6]
>>> y = [3.3,5.6,7.1,9.3,10.7,12.1]
>>> u_y = [0.5] * 6





We apply weighted least-squares regression to the data, which assumes that the values in u_y are known standard deviations for noise in y data (i.e., the data have infinite degrees of freedom)

>>> fit = type_a.line_fit_wls(x,y,u_y)
>>> print(fit)

Weighted Least-Squares Results:

  Intercept:  1.87(47)
  Slope:  1.76(12)
  Correlation: -0.9
  Sum of the squared residuals: 1.66476190476...
  Number of points: 6





More significant figures could be obtained with

>>> a = fit.intercept
>>> print( "a={:.15G}, u={:.15G}".format(value(a),uncertainty(a)) )
a=1.86666666666667, u=0.465474668125631
>>> b = fit.slope
>>> print( "b={:.15G}, u={:.15G}".format(value(b),uncertainty(b)) )
b=1.75714285714286, u=0.119522860933439
>>> print( "cov(a,b)={:.15G}".format(a.u*b.u*get_correlation(a,b)) )
cov(a,b)=-0.05





These results agree with published values [2]

a = 1.867, u(a) = 0.465
b = 1.757, u(b) = 0.120
cov(a,b) = -0.050
chi-squared = 1.665, with 4 degrees of freedom





The value of chi-squared can be compared with the Sum of the squared residuals above and the degrees of freedom is the Number of points less 2.


Application: an additional y observation after regression

The results may be used to find a value for x that corresponds to another observation y made following the regression. This is a typical application of a calibration curve.

For example, if an additional observation \(y_1 = 10.5\) has been made, with \(u(y_1) = 0.5\), we can evaluate an uncertain number for the corresponding stimulus \(x_1\):

>>> y1 = ureal(10.5,0.5)
>>> x1 = (y1-a)/b
>>> print( "x1={:.15G}, u={:.15G}".format(value(x1),uncertainty(x1)) )
x1=4.91327913279133, u=0.32203556012891





This uncertain number has components of uncertainty for the estimates of slope and intercept. So the combined uncertainty takes account of uncertainty in the parameter estimates for the calibration curve, and correlation between them.



Forward evaluation: an additional x value

The results can also be used to estimate the response \(y_2\) to a stimulus \(x_2\).

For example, if  \(x_2 = 3.5\), and \(u(x_2) = 0.2\), we can evaluate an uncertain number for \(y_2\) as follows

>>> x2 = ureal(3.5,0.2)
>>> y2 = a + b*x2
>>> print( "y2={:.15G}, u={:.15G}".format(value(y2),uncertainty(y2)) )
y2=8.01666666666667, u=0.406409531732455





This is an uncertain number representing the mean, or underlying true, response to \(x_2\).  Again, the uncertain number for \(y_2\) has components of uncertainty for the estimates of slope and intercept.




Example 2: unequal weights

A series of six pairs of x-y observations have been collected.

The data sequences for x and y, with uncertainties in y, are

>>> x = [1,2,3,4,5,6]
>>> y = [3.2, 4.3, 7.6, 8.6, 11.7, 12.8]
>>> u_y = [0.5,0.5,0.5,1.0,1.0,1.0]





Again, a weighted least-squares regression can be used, which assumes that the uncertainties in y values are exactly known (i.e., infinite degrees of freedom)

>>> fit = type_a.line_fit_wls(x,y,u_y)
>>> print( fit )

Weighted Least-Squares Results:

  Intercept:  0.89(53)
  Slope:  2.06(18)
  Correlation: -0.87
  Sum of the squared residuals: 4.13080168776...
  Number of points: 6





More significant figures can be obtained by the same commands used in Example 1:

a=0.885232067510549, u=0.529708143508836
b=2.05696202531646, u=0.177892016741205
cov(a,b)=-0.0822784810126582





These results agree with published values [3]

a = 0.885, u(a) = 0.530
b = 2.057, u(b) = 0.178
cov(a,b) = -0.082
chi-squared = 4.131, with 4 degrees of freedom






Application: an additional y observation after regression

After regression, the uncertain numbers for the intercept and slope can be used to estimate the stimulus \(x_1\) for a further observation \(y_1\). For example, if \(y_1 = 10.5\) and \(u(y_1) = 1.0\), \(x_1\) is obtained in the same way as Example 1

>>> a = fit.intercept
>>> b = fit.slope
>>> y1 = ureal(10.5,1)
>>> x1 = (y1 - a)/b
>>> print( "x1={:.15G}, u={:.15G}".format( value(x1),uncertainty(x1) ) )
x1=4.674..., u=0.533...








Example 3: uncertainty in x and y

A series of six pairs of observations have been collected.

The data sequences for x, y, each with uncertainties are

>>> x = [1.2,1.9,2.9,4.0,4.7,5.9]
>>> u_x = [0.2] * 6
>>> y = [3.4,4.4,7.2,8.5,10.8,13.5]
>>> u_y = [0.2,0.2,0.2,0.4,0.4,0.4]





We use total least-squares regression in this case, because there is uncertainty in both the dependent and independent variablest

>>> fit = type_a.line_fit_wtls(x,y,u_x,u_y,fit.a_b)
>>> print( fit )

Weighted Total Least-Squares Results:

  Intercept:  0.58(48)
  Slope:  2.16(14)
  Correlation: -0.9
  Sum of the squared residuals: 2.74267678973...
  Number of points: 6





Again, more figures can be obtained using the same commands as in Example 1

a=0.578822122145264, u=0.480359046511757
b=2.15965656740064, u=0.136246483136605
cov(a,b)=-0.0586143419560877





These results agree with the published values [4]

a = 0.5788, u(a) = 0.0.4764
b = 2.159, u(b) = 0.1355
cov(a,b) = -0.0577
chi-squared = 2.743, with 4 degrees of freedom





(There are slight differences due to a different number of iterations in the TLS calculation.)



Example 4: relative uncertainty in y

A series of six pairs of x-y observations are used. The uncertainties in the \(y\) values are not known. However, a scale factor \(s_y\) is given and it is assumed that, for every observation \(y\), the associated uncertainty \(u(y) = s_y \sigma\). The common factor \(\sigma\) is not known, but can be estimated from the residuals. This is done by the function type_a.line_fit_rwls().

We proceed as above

>>> x = [1,2,3,4,5,6]
>>> y = [3.014,5.225,7.004,9.061,11.201,12.762]
>>> u_y = [1] * 6
>>> fit = type_a.line_fit_rwls(x,y,u_y)
>>> print( fit )

Relative Weighted Least-Squares Results:

  Intercept:  1.17(16)
  Slope:  1.964(41)
  Correlation: -0.9
  Sum of the squared residuals: 0.11649828571...
  Number of points: 6





More precise values of the fitted parameters are

a=1.172, u=0.158875093196181
b=1.96357142857143, u=0.0407953578791729
cov(a,b)=-0.00582491428571429





These results agree with the published values [5]

a = 1.172, u(a) = 0.159
b = 1.964, u(b) = 0.041
cov(a,b) = -0.006
chi-squared = 0.171, with 4 degrees of freedom






Note

In our solution, 4 degrees of freedom are associated with estimates of the intercept and slope. This is the usual statistical treatment. However, a trend in recent uncertainty guidelines is to dispense with the notion of degrees of freedom. So, in a final step, reference [1] multiplies \(u(a)\) and \(u(b)\) by an additional factor of 2. We do not agree with this last step. GTC uses the finite degrees of freedom associated with the intercept and slope to calculate the coverage factor required for an expanded uncertainty.





Example 5: unknown uncertainty in y

The data in previous example could also have been processed by an ‘ordinary’ least-squares regression algorithm, because the scale factor for each observation of y was unity. In effect, a series of six values for the dependent and independent variables were collected, and the variance associated with each observation was assumed to be the same.

We proceed as follows. The data sequences are defined and the ordinary least-squares function is applied

>>> x = [1,2,3,4,5,6]
>>> y = [3.014,5.225,7.004,9.061,11.201,12.762]
>>> fit = type_a.line_fit(x,y)
>>> print( fit )

Ordinary Least-Squares Results:

  Intercept:  1.17(16)
  Slope:  1.964(41)
  Correlation: -0.9
  Sum of the squared residuals: 0.11649828571...
  Number of points: 6





More precise values of the fitted parameters are

a=1.172, u=0.158875093196181
b=1.96357142857143, u=0.0407953578791729
cov(a,b)=-0.00582491428571429





The same results were obtained in Example 4.


Application: an additional response

After regression, if a further observation of \(y\) becomes available, or a set of observations, then the corresponding stimulus can be estimated.

For example, if we wish to know the stimulus \(x_1\) that gave rise to a response \(y_1 = 10.5\), we can use the object fit returned by the regression (note that x_from_y() takes a sequence of y values)

>>> y1 = 10.5
>>> x1 = fit.x_from_y( [y1] )
>>> print( x1 )
4.751(97)







Forward evaluation: an additional stimulus

The regression results can also be used to predict a single future response \(y\) for a given stimulus \(x\).

For example, if  \(x_2 = 3.5\) we can find \(y_2\) as follows

>>> x2 = 3.5
>>> y2 = fit.y_from_x(x2)
>>> print( y2 )
8.04(18)





In this case, the uncertainty reported for \(y_2\) includes a component for the variability of individual responses. The method y_from_x() incorporates this information from the regression analysis.

Alternatively, the mean response to a stimulus \(x_2\) can be obtained directly from the fitted parameters

>>> x2 = 3.5
>>> a, b = fit.a_b
>>> y2 = a + b*x2
>>> print( y2 )
8.044(70)





Footnotes



[1]
(1,2)
These examples also appear in BS DD ISO/TS 28037:2010 Determination and use of straight-line calibration functions, (British Standards Institute, 2010).



[2]
Section 6.3, page 13, in BS DD ISO/TS 28037:2010.



[3]
Section 6.3, page 15, in BS DD ISO/TS 28037:2010.



[4]
Section 7.4, page 21, in BS DD ISO/TS 28037:2010.



[5]
Appendix E, pages 58-59, in BS DD ISO/TS 28037:2010.








            

          

      

      

    

  

    
      
          
            
  
Linear Calibration Equations

This section applies GTC to a simple calibration problem [1].



	Calibration


	Measurement model


	A 2-point calibration curve


	The non-linearity error


	The calibration equation






	Linearising the sensor response


	The new calibration equation










Calibration

A pressure sensor with an approximately linear response is to be calibrated.

Eleven reference pressures are accurately generated and the corresponding sensor indications are recorded. The standard pressure values are entered in the`y_data` sequence and sensor readings in x_data (data from Table 4 in [1]):

>>> y_data = (0.0,2.0,4.0,6.0,8.0,10.0,12.0,14.0,16.0,18.0,20.0)
>>> x_data = (0.0000,0.2039,0.4080,0.6120,0.8160,1.0201,1.2242,1.4283,1.6325,1.8367,2.0410)





The sensor indication does not change when observations are repeated at the same reference pressure values, which suggests that the digital resolution of the sensor is much less than any repeatability errors associated with calibration. So we ignore random noise as a source of error.


Measurement model

A linear model of the sensor’s behaviour is


\[Y = \alpha + \beta\, X\;,\]

where \(Y\) represents the applied pressure and \(X\) the sensor response.

In operation, the sensor indication, \(x\) is taken as an estimate of \(X\). The relationship between an applied pressure \(Y_i\) and the indication \(x_i\) may be expressed as


\[Y_i = \alpha + \beta\, (x_i - E_{\mathrm{res} \cdot i}) + E_{\mathrm{lin} \cdot i}\]

where \(E_{\mathrm{res} \cdot i}\) and \(E_{\mathrm{lin} \cdot i}\) are errors.

\(E_{\mathrm{res} \cdot i}\) is a round-off error due to the finite number of digits displayed (i.e., instead of \(X_i\), the number displayed is \(x_i = X_i + E_{\mathrm{res} \cdot i}\)).

\(E_{\mathrm{lin} \cdot i}\) is the difference between an actual applied pressure \(Y_i\) and the pressure predicted by the linear model \(\alpha + \beta\, X_i\).

During calibration, the applied reference pressure \(Y_{\mathrm{cal} \cdot i}\) is not known exactly. The nominal reference pressure is


\[y_{\mathrm{cal} \cdot i} = Y_{\mathrm{cal} \cdot i} + E_{\mathrm{cal} \cdot i} \;,\]

where \(E_{\mathrm{cal} \cdot i}\) is a measurement error in the reference. The uncertainty of \(y_{\mathrm{cal} \cdot i}\) as an estimate of \(Y_{\mathrm{cal} \cdot i}\) is given as a relative standard uncertainty


\[\frac{u(y_{\mathrm{cal} \cdot i})}{y_{\mathrm{cal} \cdot i}} = 0.000115 \; .\]



A 2-point calibration curve

A calibration procedure estimates \(\alpha\) and \(\beta\). The actual slope, \(\beta\), is


\[\beta = \frac{Y_{\mathrm{cal} \cdot 10} - Y_{\mathrm{cal} \cdot 0}}{X_{\mathrm{cal} \cdot 10}-X_{\mathrm{cal} \cdot 0}} \;.\]

Points near the ends of the range of data available are most influential when estimating the slope and intercept of a linear calibration function, So, an estimate of the slope is


\[b = \frac{y_{\mathrm{cal} \cdot 10} - y_{\mathrm{cal} \cdot 0}}{x_{\mathrm{cal} \cdot 10}-x_{\mathrm{cal} \cdot 0}} \;.\]

Using uncertain numbers, this can be calculated

>>> u_ycal_rel = 0.000115
>>> u_res = type_b.uniform(0.00005)

>>> x_0 = x_data[0] - ureal(0,u_res,label='e_res_0')
>>> x_10 = x_data[10] - ureal(0,u_res,label='e_res_10')

>>> y_0 = ureal(y_data[0],y_data[0]*u_ycal_rel,label='y_0')
>>> y_10 = ureal(y_data[10],y_data[10]*u_ycal_rel,label='y_10')

>>> b = (y_10 - y_0)/(x_10 - x_0)
>>> a = y_10 - b * x_10





The results for a and b, as well as the correlation coefficient, are

>>> a
ureal(0.0,0.0002828761730473424,inf)
>>> b
ureal(9.799118079372857,0.0011438175474686209,inf)
>>> get_correlation(a,b)
-0.12117041864179227







The non-linearity error

Using the remainder of the calibration data, we can compare the calibration line with the calibration data points and thereby assess the importance of non-linear sensor response across the range. The following will display a table of differences between the data and the model

>>> for x_i,y_i in zip(x_data,y_data):
...     dif = y_i - (x_i * b + a)
...     print("x = {:G}, dif ={}".format(x_i,dif))
...
x = 0, dif =...0.00000(28)
x = 0.2039, dif = 0.00196(34)
x = 0.408, dif = 0.00196(52)
x = 0.612, dif = 0.00294(72)
x = 0.816, dif = 0.00392(94)
x = 1.0201, dif = 0.0039(12)
x = 1.2242, dif = 0.0039(14)
x = 1.4283, dif = 0.0039(16)
x = 1.6325, dif = 0.0029(19)
x = 1.8367, dif = 0.0020(21)
x = 2.041, dif = 0.0000(23)





A maximum deviation (worst case error) is taken to be 0.005.[#Kessel]_ This amount of deviation is assumed to cover departures from linearity of the sensor [2].



The calibration equation

We now have sufficient information to define a calibration function that takes a sensor indication and returns an uncertain number for applied pressure. For instance,

>>> u_lin = type_b.uniform(0.005)
>>> u_res = type_b.uniform(0.00005)

>>> a = ureal(0.0,0.00028,label='a',independent=False)
>>> b = ureal(9.79912, 0.00114,label='b',independent=False)
>>> set_correlation(-0.1212,a,b)

>>> def cal_fn(x):
...     """-> pressure estimate
...     :arg x: sensor reading (a number)
...     :returns: an uncertain number representing the applied pressure
...     """
...     e_res_i = ureal(0,u_res,label='e_res_i')
...     e_lin_i = ureal(0,u_lin,label='e_lin_i')
...     return a + b * (x + e_res_i) + e_lin_i
...





With this function, we can calculate pressures and expanded uncertainties (\(k=2\)) for the calibration data, which can be compared with Table 7 in the reference [1]

>>> for i,x_i in enumerate(x_data):
...    y_i = cal_fn(x_i)
...    print("{}: p={:G},  U(p)={:G}".format(i,y_i.x,2*y_i.u))
...
0: p=0,  U(p)=0.00582812
1: p=1.99804,  U(p)=0.00584124
2: p=3.99804,  U(p)=0.00589119
3: p=5.99706,  U(p)=0.00597701
4: p=7.99608,  U(p)=0.0060972
5: p=9.99608,  U(p)=0.00624986
6: p=11.9961,  U(p)=0.00643263
7: p=13.9961,  U(p)=0.00664303
8: p=15.9971,  U(p)=0.00687865
9: p=17.998,  U(p)=0.00713689
10: p=20,  U(p)=0.00741554








Linearising the sensor response

With additional information about the typical behaviour of this type of sensor, we can pre-process readings and improve the linearity of the response. The following equation takes a raw indication \(x\) and returns a value that will vary more linearly with applied pressure than \(x\). The effect of \(f_\mathrm{lin}\) is to reduce the difference between the pressure estimates and actual pressures.


\[f_\mathrm{lin}(x) = c_0 + c_1x + c_2x^2 + c_3x^3\]

The coefficients \(c_i\) apply to the type of sensor; they are not determined as part of the calibration procedure. No uncertainty need be associated with these numbers.

The pre-processing function can be implemented as

>>> def f_lin(x):
...    """improve sensor linearity"""
...    c0 = 0.0
...    c1 = 9.806
...    c2 = -2.251E-3
...    c3 = -5.753E-4
...    return c0 + (c1 + (c2 + c3*x)*x)*x
...





Our model of the measurement is now


\[Y_i = \alpha + \beta\, f_\mathrm{lin}(x_i - E_{\mathrm{res} \cdot i}) + E_{\mathrm{lin} \cdot i} \;\]

To calibrate this ‘linearised’ sensor, the original indications \(x_{\mathrm{cal} \cdot 10}\) and \(x_{\mathrm{cal} \cdot 0}\) are transformed by \(f_\mathrm{lin}(X)\) before calculating the slope and intercept (this transformation also takes account of the reading error).

>>> u_ycal_rel = 0.000115
>>> u_res = type_b.uniform(0.00005)

>>> x_0 = f_lin( x_data[0] - ureal(0,u_res,label='e_res_0') )
>>> x_10 = f_lin( x_data[10] - ureal(0,u_res,label='e_res_10') )

>>> y_0 = ureal(y_data[0],y_data[0]*u_ycal_rel,label='y_0')
>>> y_10 = ureal(y_data[10],y_data[10]*u_ycal_rel,label='y_10')

>>> b = (y_10 - y_0)/(x_10 - x_0)
>>> a = y_10 - b * x_10





The results are

>>> a
ureal(0.0,0.00028307798251305335,inf)
>>> b
ureal(1.000011112006328,0.00011672745986082041,inf)
>>> get_correlation(a,b)
-0.12125729816056871





The differences between nominal standard values and the sensor estimates can be displayed by

>>> for x_i,y_i in zip(x_data,y_data):
...    dif = y_i - (f_lin(x_i) * b + a)
...    print("x = {: G}, dif ={}".format(x_i,dif))
...
x = 0, dif =...0.00000(28)
x = 0.2039, dif = 0.00063(34)
x = 0.408, dif =-0.00048(52)
x = 0.612, dif =-0.00036(72)
x = 0.816, dif = 0.00003(94)
x = 1.0201, dif =-0.0003(12)
x = 1.2242, dif =-0.0002(14)
x = 1.4283, dif = 0.0002(16)
x = 1.6325, dif = 0.0000(19)
x = 1.8367, dif = 0.0003(21)
x = 2.041, dif = 0.0000(23)





Which shows that the differences are much smaller than before.

The worst-case error is now about \(\pm 0.0007\).


The new calibration equation

A new calibration function that takes a sensor indication and returns the applied pressure can be defined

>>> u_lin = type_b.uniform(0.0007)
>>> u_res = type_b.uniform(0.00005)

>>> a = ureal(0.0,0.00028,label='a',independent=False)
>>> b = ureal(1.000011, 0.000117,label='b',independent=False)
>>> set_correlation(-0.1215,a,b)

>>> def lin_cal_fn(x):
...     """-> linearised pressure estimate
...     :arg x: sensor reading (a number)
...     :returns: an uncertain number representing the applied pressure
...     """
...     e_res_i = ureal(0,u_res,label='e_res_i')
...     e_lin_i = ureal(0,u_lin,label='e_lin_i')
...     return a + b * f_lin(x + e_res_i) + e_lin_i
...





The improvement to accuracy can be seen by applying this function to the calibration data

>>> for i,x_i in enumerate(x_data):
...     y_i = lin_cal_fn(x_i)
...     print("{}: p={:0.5G},  U(p)={:.2G}".format(i,y_i.x,2*y_i.u))
...
0: p=0,  U(p)=0.0011
1: p=1.9994,  U(p)=0.0012
2: p=4.0005,  U(p)=0.0014
3: p=6.0004,  U(p)=0.0018
4: p=8,  U(p)=0.0021
5: p=10,  U(p)=0.0025
6: p=12,  U(p)=0.003
7: p=14,  U(p)=0.0034
8: p=16,  U(p)=0.0038
9: p=18,  U(p)=0.0043
10: p=20,  U(p)=0.0047





Footnotes



[1]
(1,2,3)
R Kessel, R N Kacker and K-D Sommer,
Uncertainty budget for range calibration,
Measurement 45 (2012) 1661 – 1669.



[2]
The uncertainty due to linearity errors can be estimated later by comparing the calibration data with the pressure predicted by the linear calibration curve.



[3]
A linear model is chosen for simplicity of use by the client. There is an obvious bias in the residuals that is ignored at this stage.








            

          

      

      

    

  

    
      
          
            
  
Preparation of a Calibration Standard (A1)

This section is based on a measurement described in Appendix 1 of the 3rd edition of the EURACHEM / CITAC Guide [1].

The CITAC Guide gives a careful discussion of the uncertainty analysis leading to particular numerical values. The following shows only how the subsequent calculation can be preformed using GTC.


The measurement

The concentration of Cd in a standard solution is to be determined.

This can be expressed by the equation


\[c_\mathrm{Cd} = \frac{1000 \cdot m \cdot P}{V} \; ,\]


	where
	
	\(c_\mathrm{Cd}\) is the concentration expressed (mg/L),


	\(1000\) is a conversion factor from mL to L,


	\(m\) is the mass of high purity metal (mg),


	\(P\) is the purity of the metal as a mass fraction,


	\(V\) is the volume of liquid of the standard (mL).










The uncertainty contributions

In section A1.4 of the CITAC Guide the numerical estimates of influence quantities are described. These can be used to define uncertain numbers for the mass, purity and volume. The mass and purity are defined directly as elementary uncertain numbers [2]:

>>> P = ureal(0.9999,type_b.uniform(0.0001),label='P')
>>> m = ureal(100.28,0.05,label='m') # mg





The volume has three influences that contribute to the overall uncertainty: the manufacturing tolerances of the measuring flask, the repeatability of filling and the variability of temperature during the experiment. Each is represented by an elementary uncertain number

>>> V_flask = ureal(100,type_b.triangular(0.1),label='V_flask')
>>> V_rep = ureal(0,0.02,label='V_rep')
>>> V_T = ureal(0,type_b.uniform(0.084),label='V_T')





Note that the value assigned to V_rep and V_T is zero. These represent repeatability error and the temperature error incurred during the experiment. The best estimate of these errors is zero but the uncertainty is given in the second argument to ureal.

After these definitions an uncertain number representing the volume of fluid is (we label the uncertain number for convenience when reporting the uncertainty budget later)

>>> V = result( V_flask + V_rep + V_T,label = 'V')







The uncertainty calculation

The concentration calculation is then simply [3]

>>> c_Cd = 1000 * m * P / V
>>> print( "c_Cd={:G}, u={:G}".format(c_Cd.x,c_Cd.u) )
c_Cd=1002.7, u=0.835199





The contributions to the standard uncertainty can be itemised using reporting.budget():

>>> for i in rp.budget(c_Cd):
...     print( " {}: {:G}".format(i.label,i.u) )
...
 m: 0.49995
 V_T: 0.486284
 V_flask: 0.40935
 V_rep: 0.20054
 P: 0.0578967





The contribution from the overall uncertainty in the volume of fluid, rather than the individual terms can also be compared with other contributions by using a list of influences

>>> for i in rp.budget(c_Cd,influences=[m,P,V]):
...     print( " {}: {:G}".format(i.label,i.u) )
...
 V: 0.666525
 m: 0.49995
 P: 0.0578967





These results can be compared with Figure A1.5 in the CITAC Guide.

Footnotes



[1]
On-line: http://www.citac.cc/QUAM2012_P1.pdf



[2]
Functions from the type_b module are used to scale the uncertainty parameter of a non-Gaussian error to obtain the standard deviation.



[3]
The numbers differ slightly because numbers in the CITAC Guide calculations have been rounded







            

          

      

      

    

  

    
      
          
            
  
Standardising a Sodium Hydroxide Solution (A2)

This section is based on a measurement described in Appendix 2 of the 3rd edition of the EURACHEM / CITAC Guide [1].

The CITAC Guide gives a careful discussion of the uncertainty analysis leading to particular numerical values. The following shows only how the subsequent calculation can be preformed using GTC.


The measurement

The concentration of a solution of NaOH is to be determined. The NaOH is titrated against the titrimetric standard potassium hydrogen phthalate (KHP).

The measurand can be expressed as


\[c_\mathrm{NaOH} = \frac{1000 \cdot m_\mathrm{KHP} \cdot P_\mathrm{KHP}}{M_\mathrm{KHP} \cdot V_\mathrm{T}} \; ,\]


	where
	
	\(c_\mathrm{NaOH}\) is the concentration expressed in mol/L,


	\(1000\) is a volume conversion factor from mL to L,


	\(m_\mathrm{KHP}\) is the mass of the titrimetric standard in g,


	\(P_\mathrm{KHP}\) is the purity of the titrimetric standard as a mass fraction,


	\(M_\mathrm{KHP}\) is the molar mass of KHP in g/mol,


	\(V_\mathrm{T}\) is the titration volume of NaOH solution in mL.










The uncertainty contributions

Section A2.4 of the CITAC Guide provides numerical estimates of influence quantities, which can be used to define uncertain numbers for the calculation.

The mass \(m_\mathrm{KHP}\) is determined from the difference of two weighings with balance linearity as the only source of measurement error considered. However, a linearity error occurs twice: once in the tare weighing and once in the gross weighing. So in the calculations we introduce the nett weight as a number (0.3888) and the uncertainty contribution is found by taking the difference of uncertain numbers representing the errors that occur during the weighings (if the raw observations were available, they might have been used to define u_lin_tare and u_lin_gross)  [2].

>>> u_lin_tare = ureal(0,type_b.uniform(0.15E-3),label='u_lin_tare')
>>> u_lin_gross = ureal(0,type_b.uniform(0.15E-3),label='u_lin_gross')
>>> u_m_KHP = u_lin_gross - u_lin_tare
>>> m_KHP = result( 0.3888 + u_m_KHP, label='m_KHP' )





The purity \(P_\mathrm{KHP}\) is [3]

>>> P_KHP = ureal(1.0,type_b.uniform(0.0005),label='P_KHP')





The molar mass \(m_\mathrm{KHP}\) is calculated from IUPAC data and the number of each constituent element in the KHP molecule \(\mathrm{C}_8\mathrm{H}_5\mathrm{O}_4\mathrm{K}\).

>>> M_C = ureal(12.0107,type_b.uniform(0.0008),label='M_C')
>>> M_H = ureal(1.00794,type_b.uniform(0.00007),label='M_H')
>>> M_O = ureal(15.9994,type_b.uniform(0.0003),label='M_O')
>>> M_K = ureal(39.0983,type_b.uniform(0.0001),label='M_K')

>>> M_KHP = result( 8*M_C + 5*M_H + 4*M_O + M_K, label='M_KHP' )





The volume term \(V_\mathrm{T2}\) is affected by contributions from calibration error and temperature.

>>> uV_T_cal = ureal(0,type_b.triangular(0.03),label='V_T_cal')
>>> uV_T_temp = ureal(0,0.006,label='V_T_temp')

>>> V_T = result( 18.64 + uV_T_cal + uV_T_temp, label='V_T' )





The CITAC Guide introduces a further multiplicative term \(R\) to represent repeatability errors (\(R \approx 1\))


\[c_\mathrm{NaOH} = R\,\frac{1000 \cdot m_\mathrm{KHP} \cdot P_\mathrm{KHP}}{M_\mathrm{KHP} \cdot V_\mathrm{T}} \; ,\]

In the GTC calculation this is represented by another uncertain number

>>> R = ureal(1.0,0.0005,label='R')







The uncertainty calculation

The calculation of \(c_\mathrm{NaOH}\) is now [4]:

>>> c_NaOH = R * (1000 * m_KHP * P_KHP)/(M_KHP * V_T)
>>> c_NaOH
ureal(0.102136159706...,0.000100500722124...,inf)





The contribution from different influences can be examined (and compared with Fig. A2.9 in the Guide)

>>> for i in rp.budget(c_NaOH,influences=[m_KHP,P_KHP,M_KHP,V_T,R]):
...         print( " {}: {:G}".format(i.label,i.u) )
...
 V_T: 7.47292E-05
 R: 5.10681E-05
 m_KHP: 3.21735E-05
 P_KHP: 2.94842E-05
 M_KHP: 1.88312E-06





The full uncertainty budget is

>>> for i in rp.budget(c_NaOH):
...         print( " {}: {:G}".format(i.label,i.u) )
...
 V_T_cal: 6.71088E-05
 R: 5.10681E-05
 V_T_temp: 3.28764E-05
 P_KHP: 2.94842E-05
 u_lin_tare: 2.27501E-05
 u_lin_gross: 2.27501E-05
 M_C: 1.84798E-06





Footnotes



[1]
On-line: http://www.citac.cc/QUAM2012_P1.pdf



[2]
If the balance indications for the tare and gross weighings were known they could have been used to define the values of these uncertain numbers, however the Guide does not provide this raw data. Instead, the zero value used here represents an estimate of the linearity error.



[3]
Functions from the type_b module are used here to scale the uncertainty parameters, as described in the CITAC Guide



[4]
The numbers differ slightly because numbers in the the CITAC Guide calculations have been rounded







            

          

      

      

    

  

    
      
          
            
  
An Acid/Base Titration (A3)

This section is based on a measurement described in Appendix Appendix 3 of the 3rd edition of the EURACHEM / CITAC Guide [1].

The CITAC Guide gives a careful discussion of the uncertainty analysis leading to particular numerical values. The following shows only how the subsequent calculation can be preformed using GTC.


The measurement

The method determines the concentration of an HCl solution by a sequence of experiments. This is a longer calculation than the previous examples, so the code shown below should be considered as lines of text in a file that can be executed by GTC.

The measurand can be expressed by


\[c_\mathrm{HCl} = \frac{1000 \cdot m_\mathrm{KHP} \cdot P_\mathrm{KHP} \cdot V_\mathrm{T2}}
{V_\mathrm{T1} \cdot M_\mathrm{KHP} \cdot V_\mathrm{HCl}} \; ,\]


	where
	
	\(c_\mathrm{HCl}\) is the concentration expressed (mol/L),


	\(1000\) is a volume conversion factor from mL to L,


	\(m_\mathrm{KHP}\) is the mass of KHP taken (g),


	\(P_\mathrm{KHP}\) is the purity of KHP as a mass fraction,


	\(V_\mathrm{T1}\) is the volume of NaOH to titrate KHP (mL).


	\(V_\mathrm{T2}\) is the volume of NaOH to titrate HCl (mL).


	\(M_\mathrm{KHP}\) is the molar mass of KHP (g/mol),


	\(V_\mathrm{T}\) is the titration volume of NaOH solution (mL).










The uncertainty contributions

Section A3.4 of the CITAC Guide provides numerical estimates of influence quantities, which can be used to define uncertain numbers for the uncertainty calculation.

The mass \(m_\mathrm{KHP}\) is determined from the difference of two weighings with balance linearity as the only source of measurement error. However, a linearity error arises twice: once in the tare weighing and once in the gross weighing. So, in the calculations we introduce the nett weight as a number (0.3888) and the uncertainty contribution is found by taking the difference of uncertain numbers representing estimates of the errors that occur during the weighings (if the raw observations were available, they might have been used to define u_lin_tare and u_lin_gross) [2].

>>> u_lin_tare = ureal(0,type_b.uniform(0.15E-3),label='u_lin_tare')
>>> u_lin_gross = ureal(0,type_b.uniform(0.15E-3),label='u_lin_gross')
>>> m_KHP = result( 0.3888 + u_lin_gross - u_lin_tare, label = 'm_KHP' )





The purity \(P_\mathrm{KHP}\) is [3]

>>> P_KHP = ureal(1.0,type_b.uniform(0.0005),label='P_KHP')





The volume term \(V_\mathrm{T2}\) is affected by contributions from calibration error and temperature. In calculating the uncertainty contribution due to temperature, the volume expansion coefficient for water  \(2.1 \times 10^{-4} \, ^\circ\mathrm{C}^{-1}\) is used, the volume of the pipette is 15 mL and the temperature range is \(\pm 4\, ^\circ\mathrm{C}\).

>>> uV_T2_cal = ureal(0,type_b.triangular(0.03),label='V_T2_cal')
>>> uV_T2_temp = ureal(0,type_b.uniform(15 * 2.1E-4 * 4),label='V_T2_temp')

>>> V_T2 = result( 14.89 + uV_T2_cal + uV_T2_temp, label='V_T2' )





The influences of the volume term \(V_\mathrm{T1}\) are almost the same as \(V_\mathrm{T2}\), only the temperature contribution is different because a 19 mL volume of NaOH was used.

>>> uV_T1_cal = ureal(0,type_b.triangular(0.03),label='V_T1_cal')
>>> uV_T1_temp = ureal(0,type_b.uniform(19 * 2.1E-4 * 4),label='V_T1_temp')

>>> V_T1 = result( 18.64 + uV_T1_cal + uV_T1_temp, label = 'V_T1' )





The molar mass \(m_\mathrm{KHP}\) is calculated from IUPAC data and the number of each constituent element in the KHP molecule \(\mathrm{C}_8\mathrm{H}_5\mathrm{O}_4\mathrm{K}\). This can be done as follows

>>> M_C = ureal(12.0107,type_b.uniform(0.0008),label='M_C')
>>> M_H = ureal(1.00794,type_b.uniform(0.00007),label='M_H')
>>> M_O = ureal(15.9994,type_b.uniform(0.0003),label='M_O')
>>> M_K = ureal(39.0983,type_b.uniform(0.0001),label='M_K')

>>> M_KHP = result( 8*M_C + 5*M_H + 4*M_O + M_K, label='M_KHP' )





The influences on the volume term \(V_\mathrm{HCl}\) are similar to the \(V_\mathrm{T1}\) and \(V_\mathrm{T2}\). A 15 mL pipette was used with a stated uncertainty tolerance of 0.02. The range of temperature variation in the laboratory is \(4\, ^\circ\mathrm{C}\).

>>> uV_HCl_cal = ureal(0,type_b.triangular(0.02),label='uV_HCl_cal')
>>> uV_HCl_temp = ureal(0,type_b.uniform(15 * 2.1E-4 * 4),label='uV_HCl_temp')

>>> V_HCl = result( 15 + uV_HCl_cal + uV_HCl_temp, label='V_HCl' )





The CITAC Guide introduces a further multiplicative term \(R\) to represent repeatability error (\(R \approx 1\))


\[c_\mathrm{NaOH} = R\,\frac{1000 \cdot m_\mathrm{KHP} \cdot P_\mathrm{KHP}}{M_\mathrm{KHP} \cdot V_\mathrm{T}} \; ,\]

Another uncertain number is defined to represent this

>>> R = ureal(1.0,0.001,label='R')







The uncertainty calculation

The calculation of \(c_\mathrm{NaOH}\) is now

>>> c_HCl = R * (1000 * m_KHP * P_KHP * V_T2)/(M_KHP * V_T1 * V_HCl)
>>> print(c_HCl)
0.10139(18)
>>> print( uncertainty(c_HCl) )
0.0001843...





The contribution from different influences can be examined

>>> for i in rp.budget(c_HCl,influences=[m_KHP,P_KHP,M_KHP,V_T1,V_T2,V_HCl,R]):
...     print( " {}: {:G}".format(i.label,i.u) )
...
R: 0.000101387
V_T2: 9.69953E-05
V_T1: 8.33653E-05
V_HCl: 7.39151E-05
m_KHP: 3.19376E-05
P_KHP: 2.9268E-05
M_KHP: 1.86931E-06





The results (which can be compared with Figure A3.6 in the Guide) show that repeatability is the dominant component of uncertainty

The full uncertainty budget is obtained by

>>> for i in rp.budget(c_HCl):
...    print( " {}: {:G}".format(i.label,i.u) )
...
 R: 0.000101387
 V_T2_cal: 8.33938E-05
 V_T1_cal: 6.66166E-05
 uV_HCl_cal: 5.51882E-05
 V_T1_temp: 5.01198E-05
 V_T2_temp: 4.95334E-05
 uV_HCl_temp: 4.91702E-05
 P_KHP: 2.9268E-05
 u_lin_tare: 2.25833E-05
 u_lin_gross: 2.25833E-05
 M_C: 1.83443E-06





This shows that calibration error in the volume titrated is also an important component of uncertainty .



Special aspects of this measurement

The CITAC Guide discusses some aspects of this measurement in section A3.6. Two in particular are: the uncertainty associated with repeatability and bias in titration volumes.

A reduction in the uncertainty attributed to repeatability, by a factor of \(\sqrt{3}\), has a small effect on the final combined uncertainty. This may be seen in the GTC calculation by changing the definition of the uncertain number R

>>> R = ureal(1.0,0.001/math.sqrt(3),label='R')

>>> c_HCl = R * (1000 * m_KHP * P_KHP * V_T2)/(M_KHP * V_T1 * V_HCl)
>>> print('c_HCl ={}'.format(c_HCl))
c_HCl = 0.10139(16)


>>> for i in rp.budget(c_HCl,influences=[m_KHP,P_KHP,M_KHP,V_T1,V_T2,V_HCl,R]):
...     print( " {}: {:G}".format(i.label,i.u) )
...
 V_T2: 9.69953E-05
 V_T1: 8.33653E-05
 V_HCl: 7.39151E-05
 R: 5.85359E-05
 m_KHP: 3.19376E-05
 P_KHP: 2.9268E-05
 M_KHP: 1.86931E-06





The new results show that the combined uncertainty is not much changed when the repeatability is improved.

Another consideration is that a bias may be introduced by the use of phenolphthalein as an indicator. The excess volume in this case is about 0.05 mL with a standard uncertainty of 0.03 mL.

We can adapt our calculations above by defining two elementary uncertain numbers to represent the bias. These can be subtracted from the previous estimates [4]:

>>> V_T1_excess = ureal(0.05,0.03,label='V_T1_excess')
>>> V_T1 = V_T1 - V_T1_excess

>>> V_T2_excess = ureal(0.05,0.03,label='V_T2_excess')
>>> V_T2 = V_T2 - V_T2_excess

>>> print( uncertainty(V_T1) )
0.033688...

>>> print( uncertainty(V_T2) )
0.033210...





The uncertainties are roughly twice the previous values.

The concentration of HCl can then be re-calculated using the same measurement equation

>>> c_HCl = R * (1000 * m_KHP * P_KHP * V_T2)/(M_KHP * V_T1 * V_HCl)
>>> print( c_HCl )
0.10132(31)
>>> print( uncertainty(c_HCl) )
0.0003096...





The combined uncertainty is now about twice as large (in mol/L).

Footnotes



[1]
On-line: http://www.citac.cc/QUAM2012_P1.pdf



[2]
If the balance indications for the tare weighing and gross weighing were known they could have been used to define the values of these uncertain numbers, however the CITAC Guide does not provide this raw data. Instead, the zero value used here represents the linearity error.



[3]
Functions from the type_b module are used here to scale the uncertainty parameters, as described in the CITAC Guide



[4]
The CITAC Guide does not provide different raw titration results for this case. However, the numerical values of V_T1 and V_T2 will not be the same, because there are now two different parts to the experiment.







            

          

      

      

    

  

    
      
          
            
  
Cadmium released from ceramic-ware (A5)



	The measurement


	The uncertainty contributions


	Dilution factor


	Leachate volume


	A calibration curve for cadmium concentration


	Liquid surface area


	Temperature effect


	Time effect


	Acid concentration






	The uncertainty calculation





This section is based on a measurement described in Appendix 5 of the 3rd edition of the EURACHEM / CITAC Guide [1].

The CITAC Guide gives a careful discussion of the uncertainty analysis leading to particular numerical values. The following shows only how the data processing could be preformed using GTC.


The measurement

The experiment determines the amount of cadmium released from ceramic ware.

The measurand can be expressed as


\[r = \frac{c_0 \cdot V_\mathrm{L}}{a_\mathrm{v}}
\cdot d \cdot f_\mathrm{acid} \cdot f_\mathrm{time} \cdot f_\mathrm{temp}
\; ,\]


	where
	
	\(r\) is the mass of cadmium leached per unit area \((\mathrm{mg}\, \mathrm{dm}^{-2})\),


	\(c_0\) cadmium content in the extraction solution (\(\mathrm{mg}\, \mathrm{L}^{-1}\)),


	\(V_\mathrm{L}\) is the volume of leachate (L),


	\(d\) is the dilution factor,


	\(a_\mathrm{v}\) is the surface area of the liquid (\(\mathrm{dm}^2\)).


	\(f_\mathrm{acid}\) is the influence of acid concentration.


	\(f_\mathrm{time}\) is the influence of the duration,


	\(f_\mathrm{temp}\) is the influence of temperature.










The uncertainty contributions

Section A5.4 of the CITAC Guide provides numerical estimates of these quantities that can be used to define uncertain numbers for the calculation.


Dilution factor

In this example there was no dilution.



Leachate volume

Several factors contribute to the uncertainty of  \(V_\mathrm{L}\):



	\(V_{\mathrm{L}-\mathrm{fill}}\) the relative accuracy with which the vessel can be filled


	\(V_{\mathrm{L}-\mathrm{temp}}\) temperature variation affects the determined volume


	\(V_{\mathrm{L}-\mathrm{read}}\) the accuracy with which the volume reading can be made


	\(V_{\mathrm{L}-\mathrm{cal}}\) the accuracy with which the manufacturer can calibrate a 500 mL vessel







Uncertain numbers for each contribution can be defined and combined to obtain an uncertain number for the volume. In this case, the volume of leachate is 332 mL.

>>> v_leachate = 332 # mL
>>> a_liquid = 2.1E-4   # liquid volume expansion per degree
>>> v_fill = ureal(0.995,tb.triangular(0.005),label='v_fill')
>>> v_temp = ureal(0,tb.uniform(v_leachate*a_liquid*2),label='v_temp')
>>> v_reading = ureal(1,tb.triangular(0.01),label='v_reading')
>>> v_cal = ureal(0,tb.triangular(2.5),label='v_cal')

# Change units to liters now
>>> V_L = result(
...     (v_leachate * v_fill * v_reading + v_temp + v_cal)/1000,
...     label='V_L') # L
...
>>> print( "V leachate: {}".format(V_L) )
V leachate: 0.3303(18)







A calibration curve for cadmium concentration

The amount of leached cadmium is calculated using a calibration curve. A linear relationship is assumed between observed absorbance and cadmium concentration.


\[A_i = c_i \cdot B_1 + B_0 + E_i \; ,\]

where \(B_1\) and \(B_0\) are the slope and intercept, respectively, of the line, \(A_i\) is the observed absorbance, \(c_i\) is the concentration of the \(i^\mathrm{th}\) calibration standard and \(E_i\) is the unknown measurement error incurred during the \(i^\mathrm{th}\) observation.

Three repeat observations are made for each of five calibration standards and the parameters of the calibration line are estimated by ordinary least-squares regression.

The GTC calculation uses the line_fit() function

>>> x_data = [0.1, 0.1, 0.1, 0.3, 0.3, 0.3, 0.5, 0.5, 0.5, 0.7, 0.7, 0.7, 0.9, 0.9, 0.9]
>>> y_data = [0.028, 0.029, 0.029, 0.084, 0.083, 0.081, 0.135,
...             0.131, 0.133, 0.180, 0.181, 0.183, 0.215, 0.230, 0.216]
...
>>> fit = ta.line_fit(x_data,y_data,label='regression')

>>> B_0 = fit.intercept
>>> B_1 = fit.slope

>>> print( "Intercept: {}".format(B_0) )
Intercept: 0.0087(29)
>>> print( "Slope: {}".format(B_1) )
Slope: 0.2410(50)





There is correlation between these uncertain numbers (the estimates are correlated)

>>> print( get_correlation(B_0, B_1) )
-0.87038...





The object fit contains information about the regression that can be used to make predictions about cadmium concentration from subsequent observations of absorbance. In this case, two further values of absorbance are used to estimate the concentration \(c_0\).

Using the function x_from_y() we write (the label ‘absorbance’ will be attached to the mean of the observations and identify this influence in the uncertainty budget below)

>>> c_0 = fit.x_from_y( [0.0712,0.0716], x_label='absorbance',y_label='noise' )
>>> print( "absorbance: {}".format(c_0) )
absorbance: 0.260(18)







Liquid surface area

There are two contributions to the uncertainty of \(a_\mathrm{V}\):



	\(a_{\mathrm{V}-\mathrm{dia}}\) uncertainty due to the diameter measurement


	\(a_{\mathrm{V}-\mathrm{shape}}\) uncertainty due to imperfect shape







Uncertain numbers for each contribution can be combined to obtain an estimate of the surface area

>>> dia = ureal(2.70,0.01,label='dia')
>>> a_dia = math.pi*(dia/2)**2
>>> a_shape = ureal(1,0.05/1.96,label='a_shape')
>>> a_V = result( a_dia * a_shape, label='a_V' )
>>> print( "a_V: {}".format(a_V) )
a_V: 5.73(15)







Temperature effect

The temperature factor is given as \(f_\mathrm{temp} = 1 \pm 0.1\). Assuming a uniform distribution we define

>>> f_temp = ureal(1,tb.uniform(0.1),label='f_temp')







Time effect

The time factor is given as \(f_\mathrm{time} = 1 \pm 0.0015\). Assuming a uniform distribution we define

>>> f_time = ureal(1,tb.uniform(0.0015),label='f_time')







Acid concentration

The acid concentration factor is given as \(f_\mathrm{acid} = 1 \pm 0.0008\). This is already in the form of a standard uncertainty so we define

>>> f_acid = ureal(1,0.0008,label='f_acid')








The uncertainty calculation

To estimate \(r\) we now evaluate

>>> r = c_0 * V_L / a_V * f_acid * f_time * f_temp
>>> print( "r: {}".format(r) )
r: 0.0150(14)





The contribution from the different influences can be examined

>>> for i in rp.budget(r,influences=[c_0,V_L,a_V,f_acid,f_time,f_temp]):
...     print( " {}: {:G}".format(i.label,i.u) )
...
 absorbance: 0.00102956
 f_temp: 0.00086663
 a_V: 0.000398736
 V_L: 8.28714E-05
 f_time: 1.29994E-05
 f_acid: 1.20084E-05





The results (which can be compared with Figure A5.8 in the Guide) show that the content of cadmium in the extraction solution is the dominant component of uncertainty.

The full uncertainty budget can be obtained by writing

>>> for i in rp.budget(r,trim=0):
...     print( " {}: {:G}".format(i.label,i.u) )
...
 noise: 0.000928623
 f_temp: 0.00086663
 a_regression: 0.000688685
 a_shape: 0.00038292
 b_regression: 0.000311899
 dia: 0.000111189
 v_reading: 6.128E-05
 v_cal: 4.63764E-05
 v_fill: 3.0794E-05
 f_time: 1.29994E-05
 f_acid: 1.20084E-05
 v_temp: 3.65814E-06





This reveals that the additional observations of absorbance have contributed most to the uncertainty (so perhaps a few more observations would help)

Footnotes



[1]
On-line: http://www.citac.cc/QUAM2012_P1.pdf



[2]
Note there is a mistake in the standard uncertainty quoted in the CITAC Guide \(u(a_\mathrm{V})=0.19\), as can be verified by evaluating \(\sqrt{(0.042^2 + 0.146^2)}\).



[3]
The mistake in \(u(a_\mathrm{V})\), mentioned above , leads to give a slightly different value \(u(r)=0.0015\; \mathrm{mg}\,\mathrm{dm}^{-2}\) in the CITAC Guide.







            

          

      

      

    

  

    
      
          
            
  
Examples using UncertainArray


Example 1. Creating an UncertainArray

The following example illustrates how to create an UncertainArray and how
to use GTC functions for calculation.

Import the necessary GTC functions and modules

>>> from GTC import ureal, cos, type_a





Next, define the uncertain arrays

>>> voltages = la.uarray([ureal(4.937, 0.012), ureal(5.013, 0.008), ureal(4.986, 0.014)])
>>> currents = la.uarray([ureal(0.023, 0.003), ureal(0.019, 0.006), ureal(0.020, 0.004)])
>>> phases = la.uarray([ureal(1.0442, 2e-4), ureal(1.0438, 5e-4), ureal(1.0441, 3e-4)])





We can use the cos() function to calculate the AC resistances

>>> resistances = (voltages / currents) * cos(phases)
>>> resistances
uarray([ureal(107.88283143147648,14.07416562378944,inf),
        ureal(132.69660967977737,41.90488273081293,inf),
        ureal(125.3181626494936,25.06618583901181,inf)])





Now, to calculate the average AC resistance we could use type_a.mean(), which evaluates the mean of the uncertain number values

>>> type_a.mean(resistances)
121.96586792024915





However, that is a real number, not an uncertain number. We have discarded all information about the uncertainty of each resistance!

A better calculation in this case uses function.mean(), which will propagate uncertainties

>>> fn.mean(resistances)
ureal(121.96586792024915,16.939155846751817,inf)





This obtains an uncertain number with a standard uncertainty of 16.939155846751817 that is the combined uncertainty of the mean of AC resistance values. We could also calculate this as

>>> math.sqrt(resistances[0].u**2 + resistances[1].u**2 + resistances[2].u**2)/3.0
16.939155846751817






Note

A Type-A evaluation of the standard uncertainty of the mean of the three resistance values is a different calculation

>>> type_a.standard_uncertainty(resistances)
7.356613978879885





The standard uncertainty evaluated here by type_a.standard_uncertainty()
is a sample statistic calculated from the values alone. On the other hand,
the standard uncertainty obtained by function.mean() is evaluated by propagating
the input uncertainties through the calculation of the mean value. There is no reason to expect
these two different calculations to yield the same result.





Example 2. Creating a Structured UncertainArray

One can also make use of the structured arrays [https://numpy.org/doc/stable/user/basics.rec.html#structured-arrays] feature of numpy to access
columns in the array by name instead of by index.


Note

numpy arrays use a zero-based indexing scheme, so the first column corresponds
to index 0



Suppose that we have the following list [https://docs.python.org/3/library/stdtypes.html#list] of data

>>> data = [[ureal(1, 1), ureal(2, 2), ureal(3, 3)],
...         [ureal(4, 4), ureal(5, 5), ureal(6, 6)],
...         [ureal(7, 7), ureal(8, 8), ureal(9, 9)]]





We can create an UncertainArray from this list [https://docs.python.org/3/library/stdtypes.html#list]

>>> ua = la.uarray(data)





When ua is created it is a view into data (i.e., no elements in data
are copied)

>>> ua[0,0] is data[0][0]
True





However, if an element in ua is redefined to point to a new object then the
corresponding element in data does not change

>>> ua[0,0] = ureal(99, 99)
>>> ua[0,0]
ureal(99.0,99.0,inf)
>>> data[0][0]
ureal(1.0,1.0,inf)
>>> ua[1,1] is data[1][1]
True





If we wanted to access the data in column 1 we would use the following

>>> ua[:,1]
uarray([ureal(2.0,2.0,inf), ureal(5.0,5.0,inf),
        ureal(8.0,8.0,inf)])





Alternatively, we can assign a name to each column so that we can access columns
by name rather than by an index number (note that we must cast each row
in data to be a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] data type)

>>> ua = la.uarray([tuple(row) for row in data], names=['a', 'b', 'c'])





Since we chose column 1 to have the name 'b' we can now access column 1
by its name

>>> ua['b']
uarray([ureal(2.0,2.0,inf), ureal(5.0,5.0,inf),
                ureal(8.0,8.0,inf)])





and then perform a calculation by using the names that were chosen

>>> ua['a'] * ua['b'] + ua['c']
uarray([ureal(5.0,4.123105625617661,inf),
        ureal(26.0,28.91366458960192,inf),
        ureal(65.0,79.7057087039567,inf)])







Example 3. Calibrating a Photodiode

Suppose that we have the task of calibrating the spectral response of a
photodiode. We perform the following steps to acquire the data and then perform
the calculation to determine the spectral response of the photodiode (PD)
relative to a calibrated reference detector (REF). The experimental procedure
is as follows:


	Select a wavelength from the light source.


	Move REF to be in the beam path of the light source.


	Block the light and measure the background signal of REF.


	Unblock the light and measure the signal of REF.


	Move PD to be in the beam path of the light source.


	Block the light and measure the background signal of PD.


	Unblock the light and measure the signal of PD.


	Repeat step (1).




10 readings were acquired in steps 3, 4, 6 and 7 and they were used determine
the average and standard deviation for each measurement. The standard deviation
is shown in brackets in the table below. The uncertainty of the wavelength is
negligible.



	
	Wavelength
	[nm]






	
	PD Signal
	[Volts]






	
	PD Background
	[Volts]






	
	REF Signal
	[Volts]






	
	REF Background
	[Volts]










	400

	1.273(4)

	0.0004(3)

	3.721(2)

	0.00002(2)



	500

	2.741(7)

	0.0006(2)

	5.825(4)

	0.00004(3)



	600

	2.916(3)

	0.0002(1)

	6.015(3)

	0.00003(1)



	700

	1.741(5)

	0.0003(4)

	4.813(4)

	0.00005(4)



	800

	0.442(9)

	0.0004(3)

	1.421(2)

	0.00003(1)






We can create a list [https://docs.python.org/3/library/stdtypes.html#list] from the information in the table. It is okay to mix
built-in data types (e.g., int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float] or
complex [https://docs.python.org/3/library/functions.html#complex]) with uncertain numbers. The degrees of freedom = 10 - 1 = 9.

>>> data = [
...  (400., ureal(1.273, 4e-3, 9), ureal(4e-4, 3e-4, 9), ureal(3.721, 2e-3, 9), ureal(2e-5, 2e-5, 9)),
...  (500., ureal(2.741, 7e-3, 9), ureal(6e-4, 2e-4, 9), ureal(5.825, 4e-3, 9), ureal(4e-5, 3e-5, 9)),
...  (600., ureal(2.916, 3e-3, 9), ureal(2e-4, 1e-4, 9), ureal(6.015, 3e-3, 9), ureal(3e-5, 1e-5, 9)),
...  (700., ureal(1.741, 5e-3, 9), ureal(3e-4, 4e-4, 9), ureal(4.813, 4e-3, 9), ureal(5e-5, 4e-5, 9)),
...  (800., ureal(0.442, 9e-3, 9), ureal(4e-4, 3e-4, 9), ureal(1.421, 2e-3, 9), ureal(3e-5, 1e-5, 9))
... ]





Next, we create a named UncertainArray from data and calculate the
relative spectral response by using the names that were specified

>>> ua = la.uarray(data, names=['nm', 'pd-sig', 'pd-bg', 'ref-sig', 'ref-bg'])
>>> res = (ua['pd-sig'] - ua['pd-bg']) / (ua['ref-sig'] - ua['ref-bg'])
>>> res
uarray([ureal(0.342006675660713,0.0010935674325269068,9.630065079733788),
        ureal(0.4704581662363347,0.0012448685947602906,10.30987538377716),
        ureal(0.4847571974590064,0.0005545173836499742,13.031921586772652),
        ureal(0.36167007760313324,0.0010846673083513545,10.620461706054874),
        ureal(0.31077362646642787,0.006352297390618683,9.105944114389143)])





Since ua and res are numpy arrays we can use numpy syntax to filter information. To select
the data where the PD signal is > 2 volts, we can use

>>> gt2 = ua[ ua['pd-sig'] > 2 ]
>>> gt2
uarray([(500., ureal(2.741,0.007,9.0), ureal(0.0006,0.0002,9.0), ureal(5.825,0.004,9.0), ureal(4e-05,3e-05,9.0)),
        (600., ureal(2.916,0.003,9.0), ureal(0.0002,0.0001,9.0), ureal(6.015,0.003,9.0), ureal(3e-05,1e-05,9.0))],
        dtype=[('nm', '<f8'), ('pd-sig', 'O'), ('pd-bg', 'O'), ('ref-sig', 'O'), ('ref-bg', 'O')])





We can also use the name feature on gt2 to then get the REF signal for the filtered data

>>> gt2['ref-sig']
uarray([ureal(5.825,0.004,9.0), ureal(6.015,0.003,9.0)])





To select the relative spectral response where the wavelengths are < 700 nm

>>> res[ ua['nm'] < 700 ]
uarray([ureal(0.342006675660713,0.0010935674325269068,9.630065079733788),
        ureal(0.4704581662363347,0.0012448685947602906,10.30987538377716),
        ureal(0.4847571974590064,0.0005545173836499742,13.031921586772652)])





This is a very simplified analysis. In practise one should use a
Measurement Model.



Example 4. N-Dimensional UncertainArrays

The multi-dimensional aspect of numpy arrays is also supported.

Suppose that we want to multiply two matrices that are composed of uncertain numbers


\[C=AB\;\]

The \(A\) and \(B\) matrices are defined as

>>> A = la.uarray([[ureal(3.6, 0.1), ureal(1.3, 0.2), ureal(-2.5, 0.4)],
...             [ureal(-0.2, 0.5), ureal(3.1, 0.05), ureal(4.4, 0.1)],
...             [ureal(8.3, 1.5), ureal(4.2, 0.6), ureal(3.3, 0.9)]])
>>> B = la.uarray([ureal(1.8, 0.3), ureal(-3.5, 0.9), ureal(0.8, 0.03)])





Using the @ operator for matrix multiplication, which was introduced in
Python 3.5 (PEP 465 [https://peps.python.org/pep-0465/]), we can determine \(C\)

>>> C = A @ B  
>>> C  
uarray([ureal(-0.0699999999999994,1.7792484368406793,inf),
        ureal(-7.689999999999999,2.9414535522424963,inf),
        ureal(2.8800000000000003,5.719851484085929,inf)])





Alternatively, we can use matmul() from the linear_algebra module

>>> C = la.matmul(A, B)
>>> C
uarray([ureal(-0.0699999999999994,1.7792484368406793,inf),
        ureal(-7.689999999999999,2.9414535522424963,inf),
        ureal(2.8800000000000003,5.719851484085929,inf)])









            

          

      

      

    

  

    
      
          
            
  
Some comments about GTC fitting functions
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Overview

GTC has straight-line regression functions in both the type_a and type_b modules.

Functions in type_a implement a variety of least-squares straight line fitting algorithms that provide results in the form of uncertain numbers. When used, the input data (the sequences x and y) are treated as pure numbers (if sequences of uncertain numbers are provided, only the values are used in calculations).

Functions defined in type_b, on the other hand, expect input sequences of uncertain numbers. These functions estimate the slope and intercept of a line by applying the same type of regression algorithms, but uncertainties are propagated through the equations and the residuals are ignored.

The distinction between functions that evaluate the uncertainty of estimates from residuals (type_a) and functions that evaluate uncertainty using uncertain numbers (type_b) is useful. There will be circumstances that require the use of a function in type_b, such as when systematic errors contribute to uncertainty but cannot be estimated properly using conventional regression. Without the methods available in type_b, such components of uncertainty could not be propagated. On the other hand, functions in type_a implement conventional regression methods.

Discretion will be needed if it is believed that variability in a sample of data is due, in part, to errors not fully accounted for in an uncertain-number description of the data. The question is then: just how much of that variability can be explained by components of uncertainty already defined as uncertain number influences? If the answer is ‘very little’ then it will be appropriate to use a function from type_a to estimate the additional contribution to uncertainty from the sample variability. At the same time, components of uncertainty associated with the uncertain-number data should be propagated using a function from type_b that performs the same type of regression. The two result values will be identical (the estimates of the slope and intercept will be the same) but the uncertainties will differ. type_a.merge() can then be used to merge the results.

Clearly, this approach could potentially over-estimate the effect of some influences and inflate the combined uncertainty of results. It is a matter of judgement as to whether to merge type-A and type-B results in a particular procedure.



The type_a module regression functions


Ordinary least-squares

type_a.line_fit() implements a conventional ordinary least-squares straight-line regression. The residuals are used to estimate the underlying variance of the y data. The resulting uncertain numbers for the slope and intercept have finite degrees of freedom and are correlated.



Weighted least-squares

type_a.line_fit_wls() implements a so-called weighted least-squares straight-line regression. This assumes that the uncertainties provided with input data are known exactly (i.e., with infinite degrees of freedom). The uncertainties in the slope and intercept are calculated without considering the residuals.

This approach to linear regression is described in two well-known references [1] [2] , but it may not be what many statisticians associate with the term ‘weighted least-squares’.



Relative weighted least-squares

type_a.line_fit_rwls() implements a form of weighted least-squares straight-line regression that we refer to here as ‘relative weighted least-squares’. (Statisticians may regard this as conventional weighted least-squares.)

type_a.line_fit_rwls() accepts a sequence of scale factors associated with the observations y, which are used as weighting factors. For an observation \(y\), it is assumed that the uncertainty \(u(y) = \sigma s_y\), where \(\sigma\) is an unknown factor common to all the y data and \(s_y\) is the weight factor provided.

The procedure estimates \(\sigma\) from the residuals, so the uncertain numbers returned for the slope and intercept have finite degrees of freedom.

Note, because the scale factors describe the relative weighting of different observations, the ordinary least-squares function type_a.line_fit() and type_a.line_fit_rwls() would return equivalent results if all y observations are given the same weighting.



Weighted total least-squares

type_a.line_fit_wtls() implements a form of least-squares straight-line regression that takes account of errors in both the x and y data [3].

As in the case of type_a.line_fit_wls(), the uncertainties provided for the x and y data are assumed exact. When calculating the uncertainty in the slope and intercept, the residuals are ignored and the uncertain numbers returned have infinite degrees of freedom.



Degrees of freedom

The number of degrees of freedom is used as a measure of how accurately a standard uncertainty is known in the GUM. This relates to the standard treatment of sample statistics for a Gaussian error.

The methods of straight-line regression in GTC are based on theory for Gaussian errors. This will often be a good approximation in metrology. However, only the simple linear fit to data (type_a.line_fit()) has a clear prescription for evaluating degrees of freedom. In other types of fit, additional information is incorporated in the form of weighting coefficients. So, estimates of parameter uncertainty depend on more than just the number of observations. Also, no allowance is given for the accuracy of the model assumed (the choice of a straight line).

For these reasons, default values of degrees of freedom are attributed to the uncertain numbers returned by regression functions, but these may be overridden. The function docstrings give more details.




The type_b module regression functions


Ordinary least-squares

type_b.line_fit() implements the conventional ordinary least-squares straight-line regression to obtain estimates of the slope and intercept of a line through the data. The y data is a sequence of uncertain numbers. The uncertainty of the slope and intercept is found by propagating uncertainty from the input data; the residuals are ignored.



Weighted least-squares

type_b.line_fit_wls() implements a weighted least-squares straight-line regression to estimate the slope and intercept of a line through the data. The y data is a sequence of uncertain numbers. An explicit sequence of uncertainties for the data points may also be provided. If so, these uncertainties are used as weights in the algorithm when estimating the slope and intercept. Otherwise, the uncertainty of each uncertain number for y is used. In either case, uncertainty in the estimates of slope and intercept is obtained by propagating the uncertainty associated with the input data through the estimate equations (the residuals are ignored).


Note

type_a.line_fit_wls() and type_b.line_fit_wls() yield the same results when a sequence of elementary uncertain numbers is defined for y and used with type_a.line_fit_wls() and the values and uncertainties of that sequence are used with type_a.line_fit_wls().




Note

There is no need for a ‘relative weighted least-squares’ function in the type_b module. Using a sequence of u_y values with type_b.line_fit_wls() will perform this calculation.





Weighted total least-squares

type_b.line_fit_wtls() implements a form of least-squares straight-line regression that takes account of errors in both the x and y data. [3].

As with type_b.line_fit_wls(), sequences of uncertainties for the x and y data may be supplied in addition to sequences of the x and y data. When the optional uncertainty sequences are provided, estimates of the slope and intercept use those uncertainties as weights in the regression process. Otherwise, the input data uncertainties are used as weights in the regression process.  In either case, uncertainty in the estimates of slope and intercept is calculated by propagating uncertainty from the input data through the regression equations (residuals are ignored).

Footnotes



[1]
Philip Bevington and D. Keith Robinson, Data Reduction and Error Analysis for the Physical Sciences



[2]
William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical Recipes: The Art of Scientific Computing



[3]
(1,2)
M Krystek and M Anton, Meas. Sci. Technol. 22 (2011) 035101 (9pp)








            

          

      

      

    

  

    
      
          
            
  
Serialisation of uncertain numbers

This section of the GTC documentation describes our way of storing and retrieving uncertain numbers. The description does not depend on a particular format (like JSON or XML). We use UML diagrams to illustrate the ideas [1].
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The measurement model

GTC implements the method of evaluating measurement uncertainty described in the GUM [2]. This is the idea that a mathematical model of the measurand can be expressed as a function of terms representing quantities that significantly influence the outcome of a measurement procedure. This function can also be called the measurement model (see Measurement models),


\[Y = f(X_1, X_2, \cdots) \;,\]

where the \(X_i\) are influence quantities, which are not precisely known. What is known are values for influence quantity estimates, \(x_i\). The standard uncertainty in \(x_i\) as an estimate of \(X_i\) is denoted \(u(x_i)\). A value for the degrees of freedom, \(\nu_i\), may also be available [3].

A particular measurement process at a laboratory is often taken to be the subject being modelled. However, this is not strictly correct. A traceable measurement is really a staged process that takes place over time and at different laboratories. Typically, national metrology institutes realise reference standards for SI units and then calibrate transfer standards for second-tier calibration laboratories. Second-tier laboratories in turn calibrate customer instruments, or other working standards. This process finally ends with a measurement that is not passed further along the chain.

The function \(f(\cdots)\) should really describe the whole traceability chain, starting with the realisation of unit references and continuing to the current stage. In practice, no one does that; however, the serialisation processes provided by GTC implements the necessary data processing.

Serialisation makes it possible to store uncertain-number results and their influences defined in one session. Those details can be restored in a later session, where calculations can be continued with no loss of information. So, serialisation allows data processing to be staged. This is helpful to account for consecutive stages in a traceability chain.


Components of uncertainty

The GUM explains that it is important to report the value of a measurement result together with as much information about its uncertainty as possible. In particular, the set of uncertainty components are important and should be reported (these values are often called an uncertainty budget). The components are defined as


\[u_i(y) = \left. \frac{\partial f}{\partial X_i} \right|_{X_i = x_i} \, u(x_i)\;,\]

where \(u(x_i)\) is the standard uncertainty in \(x_i\) as an estimate of \(X_i\), and \(u_i(y)\) is the GUM notation for a component of uncertainty in the result \(y\) due to uncertainty in the influence estimate \(x_i\).

The standard uncertainty in \(y\), as an estimate of \(Y\), can be calculated from a complete set of uncertainty components.

The GTC algorithms for uncertainty propagation use the uncertainty components held in uncertain number objects. So, serialisation must capture these components.




Serialisation

The goal of serialisation is to store enough detail about the uncertain numbers selected for storage to allow them to be restored in a different Python session and used there without loss of information.

We focus here on what we call marshalling the uncertain-number data, which involves preparation of data for storage (serialisation) and restoration of data after retrieval. The processes are the same whatever storage format is used. GTC currently offers three options: pickle (Python’s own storage format), JSON, and XML. However, pickle will not be supported in GTC v.2.0.

Marshalling involves an ‘archive’ object, which has five collections of data. The different types of element in these collections are described in more detail below. However, to get an overview, we first note that some of the collections are associated with ‘nodes’, while the rest are associated with real or complex uncertain numbers. This terminology relates to the way GTC represents data. Node objects hold information that is needed to evaluate results, but is not required to propagate uncertainty.


[image: Archive class]

An archive holds the information about uncertain numbers that is stored.



We also distinguish between ‘elementary’ and ‘intermediate’ uncertain numbers. To create an elementary uncertain number object, values must be provided for its attributes, whereas an intermediate uncertain number is obtained directly as the result of a calculation with uncertain numbers. So, the properties of intermediate uncertain numbers depend on other uncertain numbers that precede them, whereas the properties of elementary uncertain numbers are independent (they may be correlated with other elementary uncertain numbers, but that is a relation between uncertain-numbers pairs).

A class of node, which we call a ‘leaf’, is associated with each elementary uncertain number. Not all intermediate uncertain numbers have nodes, but those added to an archive will have been associated with a node [4].
The set of uncertain numbers selected for storage may depend on information held by different node objects. So, collections of leaf nodes and intermediate nodes are prepared prior to storage. Later, when an archive has been retrieved from storage, new node objects are created in the Python session before restoring any of the archived uncertain-number objects.



Basic Structural Elements


Basic types

To be clear about constraints on data values, we define some special basic data types.

Standard uncertainty (Uncertainty) is a real number that must be greater than or equal to zero.  Degrees of freedom (DoF) is a real number that must be greater than or equal to unity (and may be explicitly set to infinity). A correlation coefficient (CorrelationCoef) is a real number greater than or equal to -1 and less than or equal to 1.


[image: Constrained primitive data types]

Classes for degrees of freedom, standard uncertainty, and correlation coefficient.





Identifiers

The way we digitalise the subscripts appearing in GUM formulae is an important detail. GUM notation is intended to be read by people familiar with mathematical notation. It is quite simple, but the innocent subscript \(i\) is intended to uniquely identify each object, no matter how many different objects there are.

To do this in a digital system, we need unique identifiers. We make use of Universally Unique Identifiers (UUID). GTC uses two identifier formats. One for nodes associated with elementary uncertain numbers (leaf nodes), and another for nodes associated with intermediate uncertain numbers (respectively, eUID and iUID) [5].


[image: ID classes]

Unique identifier types for the nodes associated with elementary and intermediate uncertain numbers





Labelled data

To represent values labelled by a subscript in formal notation, we pair an identifier with a datum.


[image: Pairing of IDs with real values]

Different pairings of unique identifiers with data.



A few classes collect this labelled data (the collections are sets, where order is not important and each element is unique).



	Ensemble





[image: Ensemble class]

A set of leaf-node IDs associated with elementary uncertain numbers declared to be in the same ensemble.




	Correlation





[image: Correlation class]

A set of eCoefficient objects that record correlation between elementary uncertain numbers.








Nodes

Node objects hold information about uncertain numbers that is not required to propagate uncertainty.

A leaf node is associated with an elementary uncertain number.


[image: LeafNode class]

The LeafNode holds information about an influence quantity.



Some of the LeafNode attributes are optional:



	label can be used to help people identify influence quantities.


	complex when the node is one component of an uncertain complex number, this attribute holds the identifiers of both components.


	correlation is used when correlation coefficients have been assigned (e.g., using set_correlation())


	ensemble is used when the elementary uncertain number is part of an ensemble







There is also an IntermediateNode class that holds similar information to LeafNode.


[image: IntermediateNode class]

The IntermediateNode holds information about an intermediate result.






Marshalling


Marshalling before storage

Initially, a selection of uncertain numbers is added to an archive. Then the archive is locked (preventing further changes) and prepared for storage and serialised.

The archive must store information about all influences (elementary uncertain numbers) associated with the uncertain numbers selected for storage. This is critical to restoring the uncertain numbers in a later session. A collection of leaf node objects satisfying this requirement is stored in the archive. The collection is indexed by an eUID.


[image: Class for collecting leaf nodes]

An associative collection of leaf nodes accessed by the corresponding eUID.



The uncertain numbers selected for storage are tagged with a text label to identify them in the collection (this tag is not necessarily related to the uncertain-number label). Collections of tagged uncertain real numbers are included in the archive. Elements in this collection may be one of two types: eReal (shown above), for elementary uncertain real numbers, or IntermediateReal, for intermediate uncertain real numbers.


[image: Class for tagged uncertain real numbers]

An associative collection of details about tagged uncertain real numbers that can be accessed by the tag.



Because most of the information required to restore an elementary uncertain real number is held in a LeafNode, only the numeric value of the uncertain real number is held in eReal (this is effectively a representation for \(x_i\)).

On the other hand, the information needed to restore an intermediate uncertain real number includes a set of uncertainty components. This is held in the u_components attribute of IntermediateReal [6].


[image: Class for tagged uncertain real numbers]

A class to record details about tagged intermediate uncertain real numbers.



The collection of IntermediateNode objects in the archive is used to recreate node objects, as described above.


[image: Class for tagged uncertain real numbers]

An associative collection for tagged intermediate uncertain real numbers.



Uncertain complex numbers selected for storage are also tagged and a collection of Complex objects is included in the archive.


[image: Complex class]

An associative collection of details about uncertain complex numbers. The real and imag attributes hold tags for the components of the uncertain complex number.



Most of the information required to restore an uncertain complex number is actually held in the uncertain real number objects for its (real-valued) components. These are automatically added to another collection (untagged_real) in the archive (tags accessing this collection are derived from the tag used when selecting the uncertain complex number for storage, and are also the real and imag attributes used in the Complex class). Again, elements of this collection may be one of two types: eReal or IntermediateReal.



Marshalling after retrieval

Two steps are required to restore uncertain numbers to a Python session when an archive is retrieved from storage.

First, node objects are created for all entries in the leaf_nodes collection and all entries in the intermediate_nodes collection. This provides the support needed for the archived uncertain number objects. The process of creating nodes retains the original unique node identifiers, ensuring that relationships between nodes are preserved. Information about correlations and ensembles is also restored, as required.

The second step creates uncertain number objects for each of the tagged objects in the archive. This retrieves information about their components of uncertainty, as required. The individual uncertain number objects are held in the archive until a request is received to extract them.

Footnotes



[1]
Object Management Group, Unified Modeling Language Specification (Version 2.5), (2015) https://www.omg.org/spec/UML/2.5



[2]
BIPM and IEC and IFCC and ISO and IUPAC and IUPAP and OIML,
Evaluation of measurement data - Guide to the expression of uncertainty in measurement JCGM 100:2008 (GUM 1995 with minor corrections), (2008) http://www.bipm.org/en/publications/guides/gum [http://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461]



[3]
The function ureal() takes values of \(x_i\), \(u(x_i)\), and \(\nu_i\) and creates an elementary uncertain real number representing \(X_i\).



[4]
The function result() must be used to create a node for an intermediate uncertain number.



[5]
Identifier formats do not affect the conceptual description of serialisation. Integer tuples are the identifiers of uncertain-number objects. For elementary uncertain numbers, a 2-tuple is used: the first element is a UUID, in long integer format, obtained once for each session; the second element is an integer obtained from a counter which is incremented during the session. This format of identifier can be ordered. For intermediate uncertain numbers, the identifier is a 3-tuple, with the first two elements obtained as for elementary uncertain numbers and the last element is zero. The tuple length is used to distinguishes between elementary and intermediate identifiers, so first two elements of the identifiers may collide.



[6]
In practice, there is some benefit in separating the components of uncertainty into two distinct subsets, one of which has components with respect to influences that are correlated. There is also interest in recording what we call intermediate components of uncertainty, which relate to how much contribution an intermediate result makes to a subsequent result (for more details, see [7]).



[7]
B. D. Hall, The GUM Tree Calculator: A Python Package for Measurement Modelling and Data Processing with Automatic Evaluation of Uncertainty, Metrology 2022, 2(1), 128-149;
https://doi.org/10.3390/metrology2010009








            

          

      

      

    

  

    
      
          
            
  
License

MIT License

Copyright (c) 2024 Measurement Standards Laboratory of New Zealand

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
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Release Notes


Archival copies of GTC

In addition to the github repository, each release of GTC is archived automatically in Zenodo. The most recent release is always  at (https://doi.org/10.5281/zenodo.3982925) and previous releases can be accessed from that point. Archived releases are a snapshot of project files belonging to a release without additional information about version history.



Version 1.5.0 (2024-02-27)



	Support for storing and retrieving Archive objects in XML is provided. Functions persistence.dump_xml(), persistence.dumps_xml(), persistence.load_xml(), and persistence.loads_xml() have been added to the persistence module.


	Support for using Python pickle to store and retrieve data from archives will be removed from GTC with the release of version 2.0. This means that persistence.load(), persistence.loads(), persistence.dumps(), and persistence.dump() will be no longer be available. Deprecation warnings have been added.


	A static copy-constructor method copy() has been added for archives. This function duplicates the contents of another Archive object. The copy() method can be used, for example, after an archive has been loaded from a deprecated record format. In that case, the loaded archive is not in a state that can be re-stored (in a different format); however, a copy generated by copy() can be stored. This provides a mechanism to update archives stored in deprecated formats.


	XML and JSON schemas that describe the structure of archive serialisation records are provided. The schemas are stored in a subfolder (/schema) of the GTC installation.









Version 1.4.1 (2023-08-02)



	The straight-line regression functions that apply weights in type_a now attribute a default number of degrees of freedom to fitted parameters. The default value depends on the type of regression algorithm and may be overridden by specifying a number of degrees of freedom when calling the function.









Version 1.4.0 (2022-07-19)



	The modulo function fmod() has been added. This applies the Python library function math.fmod() [https://docs.python.org/3/library/math.html#math.fmod] to the value of the uncertain-number input and transfers the components of uncertainty to the result.


	The modulo operator % has been implemented for UncertainReal. The implementation follows the Python implementation of % for numbers. Note that the computations of math.fmod() [https://docs.python.org/3/library/math.html#math.fmod] and Python’s % are not completely equivalent (see Python documentation for math.fmod() [https://docs.python.org/3/library/math.html#math.fmod]).


	The functions create_format(), apply_format() and
to_string() have been added. See Formatting Uncertain Numbers
for more details.









Version 1.3.8 (2022-04-01)



	A bug [https://github.com/MSLNZ/GTC/issues/20] in function reporting.sensitivity() has been corrected. The function now returns zero when the independent term (x) in the argument has a standard uncertainty of zero. Previously, for example, an exception would be raised if the argument x was an uncertain complex number with a real or imaginary component having zero standard uncertainty. The docstring has been updated to explain the function’s behaviour in more detail.


	Some improvements to the validation of arguments in the regression functions in type_a and type_b.









Version 1.3.7 (2022-02-24)



	The property uid has been added to lib.UncertainReal and lib.UncertainComplex. For an lib.UncertainReal, this returns the unique identifier of an elementary uncertain number and, when defined, the unique identifier associated with an intermediate uncertain number (otherwise it returns None). Analogous behaviour is defined for an lib.UncertainComplex.


	The namedtuple named_tuples.Influence has an attribute uid for the unique identifier of an uncertain-number influence. The function reporting.budget() returns a sequence of Influence objects, each of which now has a unique identifier. This is intended to permit indexing of arbitrary information about uncertain numbers held in other data structures.


	The idiom shown for using reporting.budget() has changed in the documentation. Previously, the pair of Influence attributes was expanded. Now, a temporary variable is assigned to each Influence item during iteration and then the required attributes are selected.


	A new section in the documentation under reporting has been added to provide an example that uses the new uid feature.


	The documentation in straight_line_functions.rst has been updated and some details corrected.









Version 1.3.6 (2021-09-06)



	When loading an uncertain-number archive from a file or string, if there is an existing intermediate Node registered with the context that is indistinguishable from another in the archive, then the existing Node will be used and no error is raised. Node objects are considered indistinguishable if their labels, uncertainties and degrees of freedom are the same.


	The string format of an uncertain real number now begins with a space, if the value is positive, or a negative sign.


	The string format of an uncertain complex number now always shows the sign (+ or -) of the real component









Version 1.3.5 (2021-08-19)



	Fixed a bug in core.get_covariance(). The function incorrectly returned zero when the arguments were a single independent elementary uncertain real number.


	Fixed a bug in core.get_correlation(). The function incorrectly returned zero when the arguments were a single independent elementary uncertain real number.


	core.result() now raises a warning if applied to a pure number and there is a label specified.


	The content of archive files generated by persistence.dump(), persistence.dumps(), persistence.dump_json() and persistence.dumps_json() has changed.









Version 1.3.4 (2021-05-14)



	reporting.budget() now expects explicit keyword arguments for all options, instead of positional arguments (the names of the previous positional arguments are now the keywords).


	reporting.budget() takes a new key word intermediate


	function.implicit() has been added. This finds the uncertain-number solution x to a user-defined function \(fn(x,...) = 0\).









Version 1.3.3 (2021-02-16)



	Fixed an issue with merging uncertain numbers. The function type_a.merge() now has a tolerance parameter, which is used to determine whether the arguments a and b have equivalent values.









Version 1.3.2 (2020-09-16)



	Fixed an issue with restoration of archived uncertain numbers. A RuntimeError arose if two uncertain numbers, originally created in the same context, were restored to different archive objects in a new common context.


	An attempt to create a file or string representation of an empty archive raises a RuntimeError


	Docstrings for add() and extract() now mention the option of using the name as a look-up key (like a mapping)









Version 1.3.1 (2020-08-21)



	Fixed an issue with the r attribute of uncertain complex numbers, which returns the correlation coefficient between real and imaginary components: the calculation was incorrect (however, core.get_correlation() gave the correct result).


	Fixed an issue with the calculation of the variance-covariance matrix for an uncertain complex number with finite degrees of freedom: the matrix element for the variance of the real component was sometimes incorrectly returned for the variance of the imaginary component as well.









Version 1.3.0 (2020-07-28)



	Added support to persistence for archive storage in a JSON format. The new functions are: persistence.dump_json(), persistence.dumps_json(), persistence.load_json() and persistence.loads_json()









Version 1.2.1 (2020-04-01)



	Fixed issue #18 [https://github.com/MSLNZ/GTC/issues/18] - calculate the inverse of a matrix with uncertain elements


	Revised the documentation for the persistence module









Version 1.2.0 (2019-10-16)



	Functions to perform straight-line regressions are included in modules type_a and type_b.


	The regression functions in type_a act on sequences of numerical data in the conventional sense (i.e., only the values of data are used; if the data include uncertain number objects, the associated uncertainty is ignored). The residuals are evaluated and may contribute to the uncertainty of the results obtained, depending on the regression method.


	The regression functions in type_b act on sequences of uncertain-numbers, propagating uncertainty into the results obtained. In most cases, the regression functions in this module are paired with a function of the same name in type_a. For example, type_a.line_fit() and type_b.line_fit() both perform an ordinary least-squares regression. The uncertain-numbers for the intercept and slope obtained from type_a.line_fit() are correlated and have uncertainties that depend on the fitting residuals. On the other hand, the intercept and slope obtained by type_b.line_fit() depend on the uncertain-number data supplied, and does not take account of the residuals.


	The function type_a.merge() may be used to combine results obtained from type-A and type-B regressions performed on the same data.


	A number of example calculations are included from Appendix H of the Guide to the expression of uncertainty in measurement (GUM [https://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461]).


	A number of example calculations are included from the 3rd Edition (2012) of the EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement (CG4 [http://www.citac.cc/QUAM2012_P1.pdf]).


	There are several examples of applying GTC to linear calibration problems, including the use of regression functions in type_a and type_b.









Version 1.1.0 (2019-05-30)



	Mathematical functions in the core module (sin, sqrt, etc) can be applied to Python numbers as well as uncertain numbers (previously these functions raised an exception when applied to Python numbers).


	There is a new array-like class to hold collections of uncertain numbers. UncertainArray is based on numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], which provides excellent support for manipulating stored data. Standard mathematical operations in the core module can be applied to UncertainArray objects.


	A function reporting.sensitivity() calculates partial derivatives (sensitivity coefficients).









Version 1.0.0 (2018-11-16)


The initial release of the Python code version of the GUM Tree Calculator.

The source code was derived from the stand-alone GUM Tree Calculator version 0.9.11, which is available from the MSL web site [https://www.measurement.govt.nz/resources] . The new version has made some significant changes to the data structures used, with accompanying changes to the underlying algorithms.

The application programmer interface in GTC 1.0.0 remains very close to that provided in GTC 0.9.11, although not all functions in GTC 0.9.11 are available yet. It is our intention to provide the remainder in forthcoming releases.

The most significant change has been to the method of storing uncertain numbers. The archive module in GTC 0.9.11 was replaced in GTC 1.0.0 by the persistence module. So, archives created using GTC 0.9.11 are not interchangeable with GTC 1.0.0.
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