

GUM Tree Calculator

Measurement and uncertainty

	 Introduction

	 Installing GTC

GTC Modules

	 Core functions

	 Evaluating type-A uncertainty

	 Evaluating type-B uncertainty

	 Additional functions

	 Reporting

	 Storage

	 Named tuples

Release Notes

	 License

	 Authors

	 Change Log
	Version 1.0.0 (2018.11.16)

Indices and tables

	Index

	Module Index

Introduction

	Measurement error

	Measurement models

	Uncertain Numbers

	Uncertain real numbers

	Example: an electrical circuit

	Example: height of a flag pole

	Uncertain complex numbers

	Example: AC electric circuit

	Uncertain Number Attributes

	Uncertain numbers and measurement errors

The GUM Tree calculator (GTC) is a data processing tool that uses uncertain numbers to represent measured quantities, and automates the evaluation of uncertainty when derived quantities are calculated from measured data.

Measurement error

A measurement obtains information about a quantity; but the quantity itself (the measurand) is never determined exactly, it can only be estimated. There is always some measurement error involved. Writing this as an equation, where the unknown measurand is \(Y\) and the measurement result is \(y\), we have

\[y = Y + E_y\; ,\]

where \(E_y\) represents the measurement error. So, the measurement result, \(y\), is not quite what is wanted; it only provides an approximate value for \(Y\).

This is how ‘uncertainty’ arises. After any measurement, we are faced with uncertainty about what will happen if we take the measured value \(y\) and use it instead of the (unknown) value of the measurand, \(Y\).

For example, suppose the speed of a car is measured by a law enforcement officer. The measurement is made to decide whether, in fact, a car was travelling faster than the legal limit. However, this simple fact cannot be determined perfectly, because the actual speed \(Y\) remains unknown. It is possible that the measured value \(y\) will indicate that the car was speeding when in fact it was not, or that it was not speeding when in fact it was. The difficulty in making the correct decision is inevitable. So, in practice, a decision rule must be used that takes account of the measurement uncertainty. In this example, the rule will probably err on the side of caution (a few speeding drivers will escape rather than unfairly accusing good drivers of speeding).

Like the measurand, the measurement error \(E_y\) is not known. At best its behaviour can be described in statistical terms. This leads to more technical uses of the word ‘uncertainty’. For instance, the term ‘standard uncertainty’ refers to the standard deviation of a distribution associated with an unpredictable quantity.

Measurement models

It is generally possible to identify the most important factors that influence the outcome of a measurement process, thereby contributing to the final measurement error. In a formal analysis, these factors must be included in a measurement model, which defines the measurand in terms of all other significant influence quantities. In mathematical terms, we write

\[Y = f(X_1, X_2, \cdots) \;,\]

where the \(X_i\) are influence quantities.

Once again, the actual quantities \(X_1, X_2, \cdots\) are not known; only estimates \(x_1, x_2, \cdots\) are available. These are used to calculate a measured value that is approximately equal to the measurand

\[y = f(x_1, x_2, \cdots) \;.\]

Uncertain Numbers

Uncertain numbers are data-types designed to represent measured quantities. They encapsulate information about the measurement, including the measured value and the uncertainty of the measurement process.

Uncertain numbers are are intended to be used to process measurement data; that is, to evaluate measurement models. The inputs to a measurement model (like \(X_1, X_2, \cdots\) above) are defined as uncertain numbers. Calculations then obtain an uncertain number for the measurand (\(Y\)).

There are two types of uncertain number: one for real-valued quantities and one for complex-valued quantities. At the very least, two pieces of information are needed to define an uncertain number: a value (that is a measured, or approximate, value of the quantity) and an uncertainty that describes the extent of a distribution associated with error in the measured value.

Uncertain real numbers

The function ureal() is often used to define uncertain real number inputs.

Example: an electrical circuit

Suppose the current flowing in an electrical circuit \(I\) and the voltage across a circuit element \(V\) have been measured.

The measured values are \(x_V = 0.1\, \mathrm{V}\) and \(x_I = 15\,\mathrm{mA}\), with standard uncertainties \(u(x_V) = 1\, \mathrm{mV}\) and \(u(x_I) = 0.5\,\mathrm{mA}\), respectively.

Uncertain numbers for \(V\) and \(I\) are defined using ureal()

>>> V = ureal(0.1,1E-3)
>>> I = ureal(15E-3,0.5E-3)

The resistance can be calculated from these uncertain numbers directly using Ohm’s law

>>> R = V/I
>>> print(R)
6.67(23)

We obtain a measured value of resistance \(x_R = 6.67 \,\Omega\), which is an estimate (or approximation) for \(R\), the measurand. The standard uncertainty in \(x_R\) as an estimate of \(R\) is \(0.23 \,\Omega\).

Example: height of a flag pole

Suppose a flag is flying from a pole that has been measured to be 15 metres away from an observer (with an uncertainty of 3 cm). The angle between horizontal and line-of-sight to the top of the pole is measured as 38 degrees (with an uncertainty of 2 degrees). The question is: how high is the flag?

A measurement model expresses the relationship between the quantities involved: the height of the pole \(H\), the distance to the base of the pole \(B\) and the line-of-sight angle \(\Phi\),

\[H = B \tan\Phi \;.\]

To calculate the height, we create uncertain numbers representing the measured quantities and use the model.

>>> B = ureal(15,3E-2)
>>> Phi = ureal(math.radians(38),math.radians(2))
>>> H = B * tan(Phi)
>>> print(H)
11.72(84)

The result 11.7 metres is our best estimate of the height \(H\). The standard uncertainty of this value, as an estimate of the actual height, is 0.8 metres.

It is important to note that uncertain-number calculations are open ended. In this case, for example, we can keep going and evaluate what the observer angle would be at 20 metres from the pole (the uncertainty in the base distance remains 3 cm)

>>> B_20 = ureal(20,3E-2)
>>> Phi_20 = atan(H/B_20)
>>> print(Phi_20)
0.530(31)
>>> Phi_20_deg= Phi_20 * 180./math.pi
>>> print(Phi_20_deg)
30.4(1.8)

The value of 30.4 degrees obtained for the angle, at 20 metres from the pole, has a standard uncertainty of 1.8 degrees.

Uncertain complex numbers

The function ucomplex() is often used to define uncertain complex number inputs.

Example: AC electric circuit

Suppose measurements have been made of: the alternating current \(i\) flowing in an electrical circuit, the voltage \(v\) across a circuit element and the phase \(\phi\) of the voltage with respect to the current. The measured values are: \(x_v \approx 4.999\, \mathrm{V}\), \(x_i \approx 19.661\,\mathrm{mA}\) and \(x_\phi \approx 1.04446\,\mathrm{rad}\), with standard uncertainties \(u(x_v) = 0.0032\, \mathrm{V}\), \(u(x_i) = 0.0095\,\mathrm{mA}\) and \(u(x_\phi) = 0.00075\,\mathrm{rad}\).

Uncertain numbers for the quantities \(v\), \(i\) and \(\phi\) can be defined using ucomplex():

>>> v = ucomplex(complex(4.999,0),(0.0032,0))
>>> i = ucomplex(complex(19.661E-3,0),(0.0095E-3,0))
>>> phi = ucomplex(complex(0,1.04446),(0,0.00075))

Note, in these definitions, the uncertainty argument is a pair of numbers. These represent the standard uncertainties associated with measured values of the real and imaginary components.

The complex impedance is

>>> z = v * exp(phi) / i
>>> print(z)
(127.73(19)+219.85(20)j)

We see that our best estimate of the impedance is the complex value \((127.73 +\mathrm{j}219.85) \,\Omega\). The standard uncertainty in the real component is \(0.19 \,\Omega\) and the standard uncertainty in the imaginary component is \(0.20 \,\Omega\). There is also some correlation between the real and imaginary components

>>> get_correlation(z)
0.05820381031583993

If a polar representation of the impedance is preferred,

>>> print(magnitude(z))
254.26(20)
>>> print(phase(z))
1.04446(75)

Uncertain Number Attributes

Uncertain number objects have attributes that provide access to: the measured value (the estimate), the uncertainty (of the estimate) and the degrees of freedom (associated with the uncertainty) (see UncertainReal).

Continuing with the flagpole example, the attributes x, u, df can be used to show the value, the uncertainty and the degrees-of-freedom (which is infinity), respectively

>>> H.x
11.719284397600761
>>> H.u
0.843532951107579
>>> H.df
inf

Alternatively, there are functions that return the same attributes

>>> value(H)
11.719284397600761
>>> uncertainty(H)
0.843532951107579
>>> dof(H)
inf

Uncertain numbers and measurement errors

It is often is helpful to to formulate problems by explicitly acknowledging measurement errors. As we have said above, these errors are not known exactly; many will be residual quantities with estimates of zero or unity. However, errors usually have a physical meaning in the model that can be identified and it is often useful to do so.

In the context of the example above, the errors associated with measured values of \(B\) and \(\Phi\) were not identified. We can introduce these terms as \(E_b\) and \(E_\phi\). Then, the measured values \(b=15\,\mathrm{m}\) and \(\phi=38 \, \mathrm{deg}\) are related to the quantities of interest as

\[\begin{align}\begin{aligned}B = b - E_b\\\Phi = \phi - E_\phi\end{aligned}\end{align} \]

Our best estimates of these errors \(E_b \approx 0\) and \(E_\phi \approx 0\) are trivial, but uncertainties can now be correctly associated with these unpredictable errors \(u(E_b)=3\times 10^{2}\, \mathrm{m}\) and \(u(E_\phi)=2\, \mathrm{deg}\), not with the invariant quantities \(B\) and \(\Phi\).

The calculation can be carried out simply as

>>> B = 15 - ureal(0,3E-2,label='E_b')
>>> Phi = math.radians(38) - ureal(0,math.radians(2),label='E_phi')
>>> H = B*tan(Phi)
>>> print(H)
11.72(84)

This calculation reflects our understanding of the problem better: the numbers \(b=15\) and \(\phi=38\) are known, there is nothing ‘uncertain’ about their values. What is uncertain, however, is how to correct for the unknown errors \(E_b\) and \(E_\phi\).

The use of labels, when defining the uncertain numbers, allows us to display an uncertainty budget (see budget())

>>> for cpt in rp.budget(H):
... print("{0.label}: {0.u:.3f}".format(cpt))
...
E_phi: 0.843
E_b: 0.023

Installing GTC

From PyPI

GTC is available as a PyPI package [https://pypi.org/project/GTC/]. It can be installed using pip

pip install gtc

This obtains the most recent stable release of GTC and is the recommended way to install the package.

From the Source Code

GTC is actively developed on GitHub, where the source code [https://github.com/MSLNZ/GTC/] is available.

The easiest way to install GTC with the latest features and updates is to run

pip install https://github.com/MSLNZ/GTC/archive/master.zip

Alternatively, you can either clone the public repository

git clone git://github.com/MSLNZ/GTC.git

or download the tarball [https://github.com/MSLNZ/GTC/archive/master.tar.gz] (Unix) or zipball [https://github.com/MSLNZ/GTC/archive/master.zip] (Windows) and then extract it.

Once you have a copy of the source code, you can install it by running

cd GTC
pip install .

Dependencies

	Python 2.7, 3.4+

	scipy [https://www.scipy.org/]

Core Functions and Classes

	Core Functions

	Uncertain Number Types

	Uncertain Real Numbers

	Uncertain Complex Numbers

Core Functions

A set of core mathematical functions, together with functions that create elementary uncertain numbers and functions that can be used to access uncertain number attributes, are defined in the core module. These functions are automatically imported into the GTC namespace, so they are available after performing from GTC import *.

	
ureal(x, u, df=inf, label=None, independent=True)

	Create an elementary uncertain real number

	Parameters

	
	x (float [https://docs.python.org/3/library/functions.html#float]) – the value (estimate)

	u (float [https://docs.python.org/3/library/functions.html#float]) – the standard uncertainty

	df (float [https://docs.python.org/3/library/functions.html#float]) – the degrees-of-freedom

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – a string label

	independent (bool [https://docs.python.org/3/library/functions.html#bool]) – not correlated with other UNs

	Return type

	UncertainReal

Example:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> ur
ureal(2.5,0.5,3.0, label='x')

	
multiple_ureal(x_seq, u_seq, df, label_seq=None)

	Return a sequence of related elementary uncertain real numbers

	Parameters

	
	x_seq – a sequence of values (estimates)

	u_seq – a sequence of standard uncertainties

	df – the degrees-of-freedom

	label_seq – a sequence of labels

	Return type

	a sequence of UncertainReal

Defines an set of uncertain real numbers with
the same number of degrees-of-freedom.

Correlation between any pairs of this set of uncertain
numbers defined will not invalidate degrees-of-freedom
calculations.
(see: R Willink, Metrologia 44 (2007) 340-349, Sec. 4.1)

Example:

Example from GUM-H2
>>> x = [4.999,19.661E-3,1.04446]
>>> u = [3.2E-3,9.5E-6,7.5E-4]
>>> labels = ['V','I','phi']
>>> v,i,phi = multiple_ureal(x,u,4,labels)

>>> set_correlation(-0.36,v,i)
>>> set_correlation(0.86,v,phi)
>>> set_correlation(-0.65,i,phi)

>>> r = v/i*cos(phi)
>>> r
ureal(127.73216992810208,0.06997872798837172,4.0)

	
multiple_ucomplex(x_seq, u_seq, df, label_seq=None)

	Return a sequence of uncertain complex numbers

	Parameters

	
	x_seq – a sequence of complex values

	u_seq – a sequence of standard uncertainties or covariances

	df – the degrees-of-freedom

	label_seq – a sequence of labels for the uncertain numbers

	Return type

	a sequence of UncertainComplex

This function defines an set of uncertain complex
numbers with the same number of degrees-of-freedom.

Correlation between any pairs of these uncertain
numbers will not invalidate degrees-of-freedom calculations.
(see: R Willink, Metrologia 44 (2007) 340-349, Sec. 4.1)

Example:

GUM Appendix H2
>>> values = [4.999+0j,0.019661+0j,1.04446j]
>>> uncert = [(0.0032,0.0),(0.0000095,0.0),(0.0,0.00075)]
>>> v,i,phi = multiple_ucomplex(values,uncert,5)

>>> set_correlation(-0.36,v.real,i.real)
>>> set_correlation(0.86,v.real,phi.imag)
>>> set_correlation(-0.65,i.real,phi.imag)

>>> z = v * exp(phi)/ i
>>> z
ucomplex((127.7321699281021+219.8465119126384j), u=[0.06997872798837172,0.29571682684612355], r=-28.582576088518298, df=4.999999999999997)

	
ucomplex(z, u, df=inf, label=None, independent=True)

	Create an elementary uncertain complex number

	Parameters

	
	z (complex [https://docs.python.org/3/library/functions.html#complex]) – the value (estimate)

	u (float [https://docs.python.org/3/library/functions.html#float], 2-element or 4-element sequence) – the standard uncertainty or variance

	df (float [https://docs.python.org/3/library/functions.html#float]) – the degrees-of-freedom

	Return type

	UncertainComplex

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] if df or u have illegal values.

u can be a float, a 2-element or 4-element sequence.

If u is a float, the standard uncertainty in both
the real and imaginary components is taken to be u.

If u is a 2-element sequence, the first element is
taken to be the standard uncertainty in the real component
and the second element is taken to be the standard
uncertainty in the imaginary component.

If u is a 4-element sequence, the sequence is
interpreted as a variance-covariance matrix.

Examples:

>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')
>>> uc
ucomplex((1+2j), u=[0.5,0.5], r=0.0, df=3.0, label=x)

>>> cv = (1.2,0.7,0.7,2.2)
>>> uc = ucomplex(0.2-.5j, cv)
>>> variance(uc)
VarianceCovariance(rr=1.1999999999999997, ri=0.7, ir=0.7, ii=2.2)

	
constant(x, label=None)

	Create a constant uncertain number (with no uncertainty)

	Parameters

	x (float [https://docs.python.org/3/library/functions.html#float] or complex [https://docs.python.org/3/library/functions.html#complex]) – a number

	Return type

	UncertainReal or UncertainComplex

If x is complex, return an uncertain complex number.

If x is real return an uncertain real number.

Example:

>>> e = constant(math.e,label='Euler')
>>> e
ureal(2.718281828459045,0.0,inf, label='Euler')

	
value(x)

	Return the value

Returns a complex number if x is an uncertain complex number

Returns a real number if x is an uncertain real number

Returns x otherwise.

Example:

>>> un = ureal(3,1)
>>> value(un)
3.0
>>> un.x
3.0

	
uncertainty(x)

	Return the standard uncertainty

If x is an uncertain complex number,
return a 2-element sequence containing the standard
uncertainties of the real and imaginary components.

If x is an uncertain real number,
return the standard uncertainty.

Otherwise, return 0.

Examples:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> uncertainty(ur)
0.5
>>> ur.u
0.5

>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')
>>> uncertainty(uc)
StandardUncertainty(real=0.5, imag=0.5)

	
variance(x)

	Return the standard variance

If x is an uncertain real number, return the
standard variance.

If x is an uncertain complex number, return
a 4-element sequence containing elements of the
variance-covariance matrix.

Otherwise, return 0.

Examples:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> variance(ur)
0.25
>>> ur.v
0.25

>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')
>>> variance(uc)
VarianceCovariance(rr=0.25, ri=0.0, ir=0.0, ii=0.25)

	
dof(x)

	Return the degrees-of-freedom

Returns inf when the degrees of freedom is greater than 1E6

Examples:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> dof(ur)
3.0
>>> ur.df
3.0

>>> uc = ucomplex(1+2j,(.3,.2),3,label='x')
>>> dof(uc)
3.0

	
label(x)

	Return the label

	
component(y, x)

	Return the magnitude of the component of uncertainty
in y due to x.

	Parameters

	
	y (UncertainReal or UncertainComplex) – an uncertain number

	x (UncertainReal or UncertainComplex) – an uncertain number

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

If x and y are uncertain real, the function calls
reporting.u_component() and returns the magnitude
of the result.

If either x or y is uncertain complex,
the returned value represents the magnitude
of the component of uncertainty matrix (this is
obtained by applying reporting.u_bar()
to the result obtained from reporting.u_component()).

If either x or y is a number, zero is returned.

component can also e used in conjunction with result()
to evaluate a component of uncertainty with respect to an
intermediate uncertain number.

Examples:

>>> x1 = ureal(2,1)
>>> x2 = ureal(5,1)
>>> y = x1/x2
>>> reporting.u_component(y,x2)
-0.08
>>> component(y,x2)
0.08

>>> z1 = ucomplex(1+2j,1)
>>> z2 = ucomplex(3-2j,1)
>>> y = z1 - z2
>>> reporting.u_component(y,z2)
ComponentOfUncertainty(rr=-1.0, ri=0.0, ir=0.0, ii=-1.0)
>>> component(y,z2)
1.0

>>> I = ureal(1E-3,1E-5)
>>> R = ureal(1E3,1)
>>> V = result(I*R)
>>> P = V**2/R
>>> component(P,V)
2.0099751242241783e-05

	
get_covariance(arg1, arg2=None)

	Evaluate covariance.

The input arguments can be a pair of uncertain numbers,
or a single uncertain complex number.

When a pair of uncertain real numbers is supplied,
the correlation between the two arguments is returned
as a real number.

When one, or both, arguments are uncertain complex numbers,
a CovarianceMatrix is returned,
representing a 2-by-2 variance-covariance matrix.

	
get_correlation(arg1, arg2=None)

	Return correlation

The input arguments may be a pair of uncertain numbers,
or a single uncertain complex number.

When a pair of uncertain real numbers is provided,
the correlation between the arguments is returned as
a real number.

When one, or both, arguments are uncertain complex numbers,
a CorrelationMatrix is returned,
representing a 2-by-2 matrix of correlation coefficients.

	
set_correlation(r, arg1, arg2=None)

	Set correlation between elementary uncertain numbers

The input arguments can be a pair of uncertain numbers
(the same type, real or complex), or a single
uncertain complex number.

The uncertain number arguments must be elementary
uncertain numbers.

If the arguments have finite degrees of
freedom, they must be declared together using either
multiple_ureal() or multiple_ucomplex().

If the uncertain number arguments have infinite degrees of
freedom they can, alternatively, be declared by setting the
argument independent=False when calling
ureal() or ucomplex().

A ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised when illegal arguments are used

When a pair of uncertain real numbers is provided,
r is the correlation coefficient between them.

When a pair of uncertain complex number arguments is provided,
r must be a 4-element sequence containing correlation
coefficients between the components of the complex quantities.

Examples:

>>> x1 = ureal(2,1,independent=False)
>>> x2 = ureal(5,1,independent=False)
>>> set_correlation(.3,x1,x2)
>>> get_correlation(x1,x2)
0.3

>>> z = ucomplex(1+0j,(1,1),independent=False)
>>> z
ucomplex((1+0j), u=[1.0,1.0], r=0.0, df=inf)
>>> set_correlation(0.5,z)
>>> z
ucomplex((1+0j), u=[1.0,1.0], r=0.0, df=inf)

>>> x1 = ucomplex(1,(1,1),independent=False)
>>> x2 = ucomplex(1,(1,1),independent=False)
>>> correlation_mat = (0.25,0.5,0.75,0.5)
>>> set_correlation(correlation_mat,x1,x2)
>>> get_correlation(x1,x2)
CorrelationMatrix(rr=0.25, ri=0.5, ir=0.75, ii=0.5)

	
result(un, label=None)

	Declare un to be an uncertain-number ‘result’

un - an uncertain number
label - a label can be assigned

This function must be called before other
uncertain numbers are derived from the
uncertain number.

The dependence of other uncertain numbers on a
declared intermediate result evaluated.

Declaring intermediate results also enables
these results and the dependence of other
uncertain numbers to be stored in an archive.

	Parameters

	
	un – UncertainReal or UncertainComplex

	label – str

	Return type

	UncertainReal or UncertainComplex

Example:

>>> I = ureal(1.3E-3,0.01E-3)
>>> R = ureal(995,7)
>>> V = result(I*R)
>>> P = V**2/R
>>> component(P,V)
3.505784505642068e-05

	
cos(x)

	Uncertain number cosine function

	
sin(x)

	Uncertain number sine function

	
tan(x)

	Uncertain number tangent function

	
acos(x)

	Uncertain number arc-cosine function

Note

In the complex case there are two branch cuts: one extends
right, from 1 along the real axis to \(\infty\), continuous
from below; the other extends left, from -1 along the real axis
to \(-\infty\), continuous from above.

	
asin(x)

	Uncertain number arcsine function

Note

In the complex case there are two branch cuts: one extends
right, from 1 along the real axis to \(\infty\),
continuous from below; the other extends left, from -1 along
the real axis to \(-\infty\), continuous from above.

	
atan(x)

	Uncertain number arctangent function

Note

In the complex case there are two branch cuts:
One extends from \(\mathrm{j}\) along the imaginary axis to
\(\mathrm{j}\infty\), continuous from the right.
The other extends from \(-\mathrm{j}\) along the imaginary
axis to \(-\mathrm{j}\infty\), continuous from the left.

	
atan2(y, x)

	Two-argument uncertain number arctangent function

	Parameters

	
	x (UncertainReal) – abscissa

	y (UncertainReal) – ordinate

Note

this function is not defined for uncertain complex numbers
(use phase())

Example:

>>> x = ureal(math.sqrt(3)/2,1)
>>> y = ureal(0.5,1)
>>> theta = atan2(y,x)
>>> theta
ureal(0.5235987755982989,1.0,inf)
>>> math.degrees(theta.x)
30.000000000000004

	
exp(x)

	Uncertain number exponential function

	
pow(x, y)

	Uncertain number power function

Raises x to the power of y

	
log(x)

	Uncertain number natural logarithm

Note

In the complex case there is one branch cut,
from 0 along the negative real axis to \(-\infty\),
continuous from above.

	
log10(x)

	Uncertain number common logarithm (base-10)

Note

In the complex case there is one branch cut,
from 0 along the negative real
axis to \(-\infty\), continuous from above.

	
sqrt(x)

	Uncertain number square root function

Note

In the complex case there is one branch cut,
from 0 along the negative real
axis to \(-\infty\), continuous from above.

	
sinh(x)

	Uncertain number hyperbolic sine function

	
cosh(x)

	Uncertain number hyperbolic cosine function

	
tanh(x)

	Uncertain number hyperbolic tangent function

	
acosh(x)

	Uncertain number hyperbolic arc-cosine function

Note

In the complex case there is one branch cut,
extending left from 1 along the
real axis to \(-\infty\), continuous from above.

	
asinh(x)

	Uncertain number hyperbolic arcsine function

Note

In the complex case there are two branch cuts: one extends
from \(\mathrm{j}\) along the imaginary axis to
\(\mathrm{j}\infty\), continuous from the right;
the other extends from \(-\mathrm{j}\) along the
imaginary axis to \(-\mathrm{j}\infty\), continuous
from the left.

	
atanh(x)

	Uncertain number hyperbolic arctangent function

Note

In the complex case there are two branch cuts:
one extends from 1 along the real axis to \(\infty\),
continuous from below; the other extends from -1
along the real axis to \(-\infty\), continuous
from above.

	
mag_squared(x)

	Return the squared magnitude of x.

Note

If x is an uncertain number, the magnitude
squared is returned as an uncertain real number,
otherwise :func:abs(x)**2 is returned.

	
magnitude(x)

	Return the magnitude of x

Note

If x is not an uncertain number type,
returns abs(x) [https://docs.python.org/3/library/functions.html#abs].

	
phase(z)

	
	Parameters

	z (UncertainComplex) – an uncertain complex number

	Returns

	the phase in radians

	Return type

	UncertainReal

Uncertain Number Types

There are two types of uncertain number, one to represent real-valued quantities (UncertainReal) and one to represent real-complex quantities (UncertainComplex).

Uncertain Real Numbers

The UncertainReal class defines an uncertain-number object with the attributes x, u, v and df,
to obtain the value, uncertainty, variance and degrees-of-freedom for the uncertain number, respectively.

The function ureal() creates elementary UncertainReal objects. For example,

>>> x = ureal(1.414141,0.01)
>>> x
ureal(1.414141,0.01,inf)

All logical comparison operations (e.g., <, >, ==, etc) are applied to the value of an uncertain number. For example,

>>> un = ureal(2.5,1)
>>> un > 3
False
>>> un == 2.5
True

When the value of an UncertainReal is converted to a string (e.g., by str [https://docs.python.org/3/library/stdtypes.html#str], or by print() [https://docs.python.org/3/library/functions.html#print]), the precision depends on the uncertainty. The two least significant digits of the value correspond to the two most significant digits of the standard uncertainty. The value of standard uncertainty is appended to the string in parentheses.

For example,

>>> x = ureal(1.414141,0.01)
>>> str(x)
'1.414(10)'
>>> print(x)
1.414(10)

When an UncertainReal is converted to its Python representation (e.g., by repr() [https://docs.python.org/3/library/functions.html#repr]) a string is returned that shows the representation of the elements that define the uncertain number.

For example,

>>> x = ureal(1.4/3,0.01,5,label='x')
>>> repr(x)
"ureal(0.4666666666666666,0.01,5.0, label='x')"

	
class UncertainReal(x, u_comp, d_comp, i_comp, node=None)

	An UncertainReal holds information about the measured
value of a real-valued quantity

	
conjugate()

	Return the complex conjugate

	Return type

	UncertainReal

	
df

	Return the degrees of freedom

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Note un.df is equivalent to dof(un)

	Example::

	>>> ur = ureal(2.5,0.5,3)
>>> ur.df
3.0

	
imag

	Returns the imaginary component

	
label

	The uncertain-number label

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Note un.label is equivalent to label(un)

	Example::

	>>> x = ureal(2.5,0.5,label='x')
>>> x.label
'x'

>>> label(x)
'x'

	
real

	Return the real component

	
u

	Return the standard uncertainty

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Note that un.u is equivalent to uncertainty(un)

Example:

>>> ur = ureal(2.5,0.5)
>>> ur.u
0.5

	
v

	Return the standard variance

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Note that un.v is equivalent to variance(un)

	Example::

	>>> ur = ureal(2.5,0.5)
>>> ur.v
0.25

	
x

	Return the value

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Note that un.x is equivalent to value(un)

	Example::

	>>> ur = ureal(2.5,0.5)
>>> ur.x
2.5

Uncertain Complex Numbers

The class UncertainComplex defines an uncertain-number object with the attributes x, u, v and df,
to obtain the value, uncertainty, variance-covariance matrix and degrees-of-freedom, respectively.

The function ucomplex() creates elementary UncertainComplex objects,
for example

>>> z = ucomplex(1.333-0.121212j,(0.01,0.01))

Equality comparison operations (== and !=) are applied to the value of uncertain complex numbers.
For example,

>>> uc = ucomplex(3+3j,(1,1))
>>> uc == 3+3j
True

The built-in function abs() [https://docs.python.org/3/library/functions.html#abs] returns the magnitude of the value of the uncertain number (use magnitude() if uncertainty propagation is required). For example,

>>> uc = ucomplex(1+1j,(1,1))
>>> abs(uc)
1.4142135623730951

>>> magnitude(uc)
ureal(1.4142135623730951,0.9999999999999999,inf)

When an UncertainComplex is converted to a string (e.g., by the str [https://docs.python.org/3/library/stdtypes.html#str] function or by print() [https://docs.python.org/3/library/functions.html#print]), the precision depends on the uncertainty.

The lesser of the uncertainties in the real and imaginary components is used for formatting. The two least significant digits of the formated component values will correspond to the two most significant digits of this standard uncertainty. Values of standard uncertainty are appended to the component values in parentheses.

For example,

>>> z = ucomplex(1.333-0.121212j,(0.01,0.002))
>>> print(z)
(1.3330(100)-0.1212(20)j)

When an UncertainComplex is converted to its Python representation (e.g., by repr() [https://docs.python.org/3/library/functions.html#repr]), a string is returned that shows the representation of the elements that define the uncertain number.

For example,

>>> z = ucomplex(1.333-0.121212j,(0.01,0.002))
>>> repr(z)
'ucomplex((1.333-0.121212j), u=[0.01,0.002], r=0.0, df=inf)'

	
class UncertainComplex(r, i)

	An UncertainComplex holds information about the measured
value of a complex-valued quantity

	
conjugate()

	Return the complex conjugate

An UncertainComplex object is created by negating the imaginary
component.

	Return type

	UncertainComplex

	
df

	Return the degrees-of-freedom

When the object is not an elementary uncertain number, the
effective degrees-of-freedom is calculated using the method
described by Willink and Hall in Metrologia 2002, 39, pp 361-369.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

Note that uc.df is equivalent to dof(uc)

	Example::

	>>> uc = ucomplex(1+2j,(.3,.2),3)
>>> uc.df
3.0

	
label

	The label attribute

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

Note that``un.label`` is equivalent to label(un)

	Example::

	>>> z = ucomplex(2.5+.3j,(1,1),label='z')
>>> z.label
'z'

	
r

	Return the correlation coefficient between real
and imaginary components

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

	
u

	Return standard uncertainties for the real and imaginary components

	Return type

	2-element sequence of float

Note that uc.u is equivalent to uncertainty(uc)

Example:

>>> uc = ucomplex(1+2j,(.5,.5))
>>> uc.u
StandardUncertainty(real=0.5, imag=0.5)

	
v

	Return the variance-covariance matrix

The uncertainty of an uncertain complex number can be associated with
a 4-element variance-covariance matrix.

	Return type

	4-element sequence of float

Note that uc.v is equivalent to variance(uc)

Example:

>>> uc = ucomplex(1+2j,(.5,.5))
>>> uc.v
VarianceCovariance(rr=0.25, ri=0.0, ir=0.0, ii=0.25)

	
x

	Return the value

	Return type

	complex [https://docs.python.org/3/library/functions.html#complex]

Note that uc.x is equivalent to value(uc)

	Example::

	>>> uc = ucomplex(1+2j,(.3,.2))
>>> uc.x
(1+2j)

Evaluating type-A uncertainty

A type-A evaluation of uncertainty involves statistical analysis of data. In
contrast, a type-B evaluation of uncertainty is obtained without statistical analysis.

The shorter name ta has been defined as an alias for type_a,
to resolve the names of objects defined in this module.

Sample estimates

	estimate() returns an uncertain number defined from
the statistics of a sample of data.

	multi_estimate_real() returns a sequence of related
uncertain real numbers defined from the multivariate statistics
calculated from a sample of data.

	multi_estimate_complex() returns a sequence of related uncertain
complex numbers defined from the multivariate statistics of a sample of data.

	estimate_digitized() returns an uncertain number for
the mean of a sample of digitized data.

	mean() returns the mean of a sample of data.

	standard_uncertainty() evaluates the standard
uncertainty associated with the sample mean.

	standard_deviation() evaluates the standard
deviation of a sample of data.

	variance_covariance_complex() evaluates the variance
and covariance associated with the mean real component
and mean imaginary component of the data.

Note

Many functions in type_a treat data as pure numbers.
Sequences of uncertain numbers can be passed to these
functions, but only the uncertain-number values will be used.

Module contents

	
estimate(seq, label=None, context=<GTC.context.Context object>)

	Return an uncertain number for the mean of the data

	Parameters

	
	seq – a sequence of data

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – a label for the returned uncertain number

	Return type

	UncertainReal or UncertainComplex

The elements of seq may be real numbers, complex numbers, or
uncertain real or complex numbers. Note that only the value of uncertain
numbers will be used.

In a type-A evaluation, the sample mean provides an estimate of the
quantity of interest. The uncertainty in this estimate
is the standard deviation of the sample mean (or the
sample covariance of the mean, in the complex case).

The function returns an UncertainReal when
the mean of the data is real, and an UncertainComplex
when the mean of the data is complex.

Examples:

>>> data = range(15)
>>> type_a.estimate(data)
ureal(7.0,1.1547005383792515,14)

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]

>>> type_a.estimate(data)
ucomplex((1.059187840567141+0.9574410497332932j), u=[0.28881665310241805,0.2655555630050262], r=-4.090655272692547, df=9)

	
estimate_digitized(seq, delta, label=None, truncate=False, context=<GTC.context.Context object>)

	Return an uncertain number for the mean of digitized data

	Parameters

	
	seq (float, UncertainReal or UncertainComplex) – data

	delta (float [https://docs.python.org/3/library/functions.html#float]) – digitization step size

	label (str [https://docs.python.org/3/library/stdtypes.html#str]) – label for uncertain number returned

	truncate (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, truncation, rather than rounding, is assumed

	Return type

	UncertainReal or UncertainComplex

A sequence of data that has been formatted with fixed precision
can completely conceal a small amount of variability in the original
values, or merely obscure that variability.

This function recognises the possible interaction between truncation, or rounding,
errors and random errors in the underlying data. The function
obtains the mean of the data sequence and evaluates the uncertainty
in this mean as an estimate of the mean of the process generating
the data.

Set the argument truncate to True
if data have been truncated, instead of rounded.

See reference: R Willink, Metrologia, 44 (2007) 73-81

Examples:

LSD = 0.0001, data varies between -0.0055 and -0.0057
>>> seq = (-0.0056,-0.0055,-0.0056,-0.0056,-0.0056,
... -0.0057,-0.0057,-0.0056,-0.0056,-0.0057,-0.0057)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.005627272727272727,1.9497827808661157e-05,10)

LSD = 0.0001, data varies between -0.0056 and -0.0057
>>> seq = (-0.0056,-0.0056,-0.0056,-0.0056,-0.0056,
... -0.0057,-0.0057,-0.0056,-0.0056,-0.0057,-0.0057)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.005636363636363636,1.5212000482437775e-05,10)

LSD = 0.0001, no spread in data values
>>> seq = (-0.0056,-0.0056,-0.0056,-0.0056,-0.0056,
... -0.0056,-0.0056,-0.0056,-0.0056,-0.0056,-0.0056)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.0056,2.886751345948129e-05,10)

LSD = 0.0001, no spread in data values, fewer points
>>> seq = (-0.0056,-0.0056,-0.0056)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.0056,3.291402943021917e-05,2)

	
multi_estimate_real(seq_of_seq, labels=None)

	Return a sequence of uncertain real numbers

	Parameters

	
	seq_of_seq – a sequence of sequences of data

	labels – a sequence of str labels

	Return type

	seq of UncertainReal

The sequences in seq_of_seq must all be the same length.
Each sequence is associated with a particular quantity and contains
a sample of data. An uncertain number for the quantity will be created
using the sample of data, using sample statistics. The covariance
between different quantities will also be evaluated from the data.

A sequence of elementary uncertain numbers are returned. The uncertain numbers
are considered related, allowing a degrees-of-freedom calculations
to be performed on derived quantities.

Example:

From Appendix H2 in the GUM

>>> V = [5.007,4.994,5.005,4.990,4.999]
>>> I = [19.663E-3,19.639E-3,19.640E-3,19.685E-3,19.678E-3]
>>> phi = [1.0456,1.0438,1.0468,1.0428,1.0433]
>>> v,i,p = type_a.multi_estimate_real((V,I,phi),labels=('V','I','phi'))
>>> v
ureal(4.999,0.0032093613071761794,4, label='V')
>>> i
ureal(0.019661,9.471008394041335e-06,4, label='I')
>>> p
ureal(1.04446,0.0007520638270785368,4, label='phi')

>>> r = v/i*cos(p)
>>> r
ureal(127.73216992810208,0.0710714073969954,4.0)

	
multi_estimate_complex(seq_of_seq, labels=None, context=<GTC.context.Context object>)

	Return a sequence of uncertain complex numbers

	Parameters

	
	seq_of_seq – a sequence of sequences of data

	labels – a sequence of str labels

	Return type

	a sequence of UncertainComplex

The sequences in seq_of_seq must all be the same length.
Each sequence contains a sample of data that is associated with
a particular quantity. An uncertain number for the quantity will
be created using this data from sample statistics. The covariance
between different quantities will also be evaluated from the data.

A sequence of elementary uncertain complex numbers are returned. These
uncertain numbers are considered related, allowing a degrees-of-freedom
calculations to be performed on derived quantities.

Defines uncertain numbers using the sample statistics, including
the sample covariance.

Example:

From Appendix H2 in the GUM

>>> I = [complex(x) for x in (19.663E-3,19.639E-3,19.640E-3,19.685E-3,19.678E-3)]
>>> V = [complex(x) for x in (5.007,4.994,5.005,4.990,4.999)]
>>> P = [complex(0,p) for p in (1.0456,1.0438,1.0468,1.0428,1.0433)]

>>> v,i,p = type_a.multi_estimate_complex((V,I,P))

>>> get_correlation(v.real,i.real)
-0.355311219817512

>>> z = v/i*exp(p)
>>> z.real
ureal(127.73216992810208,0.0710714073969954,4.0)
>>> get_correlation(z.real,z.imag)
-0.5884297844235157

	
mean(seq)

	Return the arithmetic mean of data in seq

If seq contains real or uncertain real numbers,
a real number is returned.

If seq contains complex or uncertain complex
numbers, a complex number is returned.

Example:

>>> data = range(15)
>>> type_a.mean(data)
7.0

	
standard_deviation(seq, mu=None)

	Return the sample standard deviation

	Parameters

	
	seq – sequence of data

	mu – the arithmetic mean of seq

If seq contains real or uncertain real numbers,
the sample standard deviation is returned.

If seq contains complex or uncertain complex
numbers, the standard deviation in the real and
imaginary components is evaluated, as well as
the correlation coefficient between the components.
The results are returned in a pair of objects: a
StandardDeviation namedtuple
and a correlation coefficient.

Only the values of uncertain numbers are used in calculations.

Examples:

>>> data = range(15)
>>> type_a.standard_deviation(data)
4.47213595499958

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]
>>> sd,r = type_a.standard_deviation(data)
>>> sd
StandardDeviation(real=0.913318449990377, imag=0.8397604244242309)
>>> r
-0.31374045124595246

	
standard_uncertainty(seq, mu=None)

	Return the standard uncertainty of the sample mean

	Parameters

	
	seq – sequence of data

	mu – the arithmetic mean of seq

	Return type

	float or StandardUncertainty

If seq contains real or uncertain real numbers,
the standard uncertainty of the sample mean
is returned.

If seq contains complex or uncertain complex
numbers, the standard uncertainties of the real and
imaginary components are evaluated, as well as the
sample correlation coefficient are returned in a
StandardUncertainty namedtuple

Only the values of uncertain numbers are used in calculations.

Example:

>>> data = range(15)
>>> type_a.standard_uncertainty(data)
1.1547005383792515

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]
>>> u,r = type_a.standard_uncertainty(data)
>>> u
StandardUncertainty(real=0.28881665310241805, imag=0.2655555630050262)
>>> u.real
0.28881665310241805
>>> r
-0.31374045124595246

	
variance_covariance_complex(seq, mu=None)

	Return the sample variance-covariance matrix

	Parameters

	
	seq – sequence of data

	mu – the arithmetic mean of seq

	Returns

	a 4-element sequence

If mu is None the mean will be evaluated
by mean().

seq may contain numbers or uncertain numbers.
Only the values of uncertain numbers are used in calculations.

Variance-covariance matrix elements are returned
in a VarianceCovariance namedtuple;
they can be accessed using the
attributes .rr, .ri, ,ir and .ii.

Example:

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]
>>> type_a.variance_covariance_complex(data)
VarianceCovariance(rr=0.8341505910928249, ri=-0.24062910264062262, ir=-0.24062910264062262, ii=0.7051975704291644)

>>> v = type_a.variance_covariance_complex(data)
>>> v[0]
0.8341505910928249
>>> v.rr
0.8341505910928249
>>> v.ii
0.7051975704291644

Evaluating type-B uncertainty

The shorter name tb has been defined as an alias for type_b, to resolve the
names of objects in this module.

Real-valued problems

Functions are provided that convert the half-width
of a one-dimensional distribution to a standard
uncertainty:

	uniform()

	triangular()

	u_shaped()

	arcsine()

Complex-valued problems

The following functions convert information
about two-dimensional distributions into
standard uncertainties:

	uniform_ring()

	uniform_disk()

	unknown_phase_product()

A table of distributions

The mapping distribution is provided so that
the functions above can be selected by name.
For example,

>>> a = 1.5
>>> ureal(1, type_b.distribution['gaussian'](a))
ureal(1.0,1.5,inf)
>>> ureal(1, type_b.distribution['uniform'](a))
ureal(1.0,0.8660254037844387,inf)
>>> ureal(1, type_b.distribution['arcsine'](a))
ureal(1.0,1.0606601717798212,inf)

Keys to distribution are (case-sensitive):

	‘gaussian’

	‘uniform’

	‘triangular’

	‘arcsine’ or ‘u_shaped’

	‘uniform_ring’

	‘uniform_disk’

Module contents

	
uniform(a)

	Return the standard uncertainty for a uniform distribution.

	Parameters

	a (float [https://docs.python.org/3/library/functions.html#float]) – the half-width

Example:

>>> x = ureal(1,type_b.uniform(1))
>>> x
ureal(1.0,0.5773502691896258,inf)

	
triangular(a)

	Return the standard uncertainty for a triangular distribution.

	Parameters

	a (float [https://docs.python.org/3/library/functions.html#float]) – the half-width

Example:

>>> x = ureal(1,type_b.triangular(1))
>>> x
ureal(1.0,0.4082482904638631,inf)

	
u_shaped(a)

	Return the standard uncertainty for an arcsine distribution.

	Parameters

	a (float [https://docs.python.org/3/library/functions.html#float]) – the half-width

Example:

>>> x = ureal(1,type_b.arcsine(1))
>>> x
ureal(1.0,0.7071067811865475,inf)

	
arcsine(a)

	Return the standard uncertainty for an arcsine distribution.

	Parameters

	a (float [https://docs.python.org/3/library/functions.html#float]) – the half-width

Example:

>>> x = ureal(1,type_b.arcsine(1))
>>> x
ureal(1.0,0.7071067811865475,inf)

	
uniform_ring(a)

	Return the standard uncertainty for a uniform ring

	Parameters

	a (float [https://docs.python.org/3/library/functions.html#float]) – the radius

Convert the radius of a uniform ring distribution a
to a standard uncertainty

See reference: B D Hall, Metrologia 48 (2011) 324-332

Example:

>>> z = ucomplex(0, type_b.uniform_ring(1))
>>> z
ucomplex((0+0j), u=[0.7071067811865475,0.7071067811865475], r=0.0, df=inf)

	
uniform_disk(a)

	Return the standard uncertainty for a uniform disk

	Parameters

	a (float [https://docs.python.org/3/library/functions.html#float]) – the radius

Convert the radius of a uniform disk distribution a
to a standard uncertainty.

See reference: B D Hall, Metrologia 48 (2011) 324-332

Example:

>>> z = ucomplex(0, type_b.uniform_disk(1))
>>> z
ucomplex((0+0j), u=[0.5,0.5], r=0.0, df=inf)

	
unknown_phase_product(u1, u2)

	Return the standard uncertainty for a product when phases are unknown

	Parameters

	
	u1 – the standard uncertainty of the first multiplicand

	u2 – the standard uncertainty of the second multiplicand

Obtains the standard uncertainty associated
with a complex product when estimates have unknown phase.

The arguments u1 and u2 are the standard
uncertainties associated with each multiplicand.

See reference: B D Hall, Metrologia 48 (2011) 324-332

Example:

X = Gamma1 * Gamma2
>>> X = ucomplex(0, type_b.unknown_phase_product(.1,.1))
>>> X
ucomplex((0+0j), u=[0.014142135623730954,0.014142135623730954], r=0.0, df=inf)

function module

Utility functions

Functions complex_to_seq() and seq_to_complex()
are useful to convert between the matrix representation of
complex numbers and Python complex [https://docs.python.org/3/library/functions.html#complex].

The function mean() evaluates the mean of a sequence.

Module contents

	
complex_to_seq(z)

	Transform a complex number into a 4-element sequence

	Parameters

	z – a number

If z = x + yj, then an array of the form [[x,-y],[y,x]]
can be used to represent z in matrix computations.

	Examples::

	>>> import numpy
>>> z = 1 + 2j
>>> function.complex_to_seq(z)
(1.0, -2.0, 2.0, 1.0)

>>> m = numpy.array(function.complex_to_seq(z))
>>> m.shape = (2,2)
>>> print(m)
[[1. -2.]
 [2. 1.]]

	
seq_to_complex(seq)

	Transform a 4-element sequence into a complex number

	Parameters

	seq – a 4-element sequence

	Raises

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] – if seq is ill-conditioned

If z = x + yj, then an array of the form [[x,-y],[y,x]]
can be used to represent z in matrix computations.

Examples:

>>> import numpy
>>> seq = (1,-2,2,1)
>>> z = function.seq_to_complex(seq)
>>> z
(1+2j)
>>> a = numpy.array((1,-2,2,1))
>>> a.shape = 2,2
>>> a
array([[1, -2],
 [2, 1]])
>>> z = function.seq_to_complex(a)
>>> z
(1+2j)

	
mean(seq)

	Return the arithmetic mean of the elements in seq

	Parameters

	seq – a sequence, or iterable, of numbers or uncertain numbers

If the elements of seq are uncertain numbers,
an uncertain number is returned.

Example

>>> seq = [ureal(1,1), ureal(2,1), ureal(3,1)]
>>> function.mean(seq)
ureal(2.0,0.5773502691896257,inf)

Reporting functions

This module provides functions to facilitate the reporting of information
about calculations.

The shorter name rp has been defined as an alias for reporting,
to resolve the names of objects defined in this module.

Reporting functions

	The function budget() produces an uncertainty budget.

	The function k_factor() returns the coverage factor
used for real-valued problems (based on the Student-t distribution).

	The function k_to_dof() returns the degrees of freedom
corresponding to a given coverage factor and coverage probability.

	The function k2_factor_sq() returns
coverage factor squared for the complex-valued problem.

	The function k2_to_dof() returns the degrees of freedom
corresponding to a given coverage factor and coverage probability
in complex-valued problems.

	Functions u_bar() and v_bar() return summary values
for matrix results associated with 2-D uncertainty.

Uncertainty functions

	The function u_component() returns the signed
component of uncertainty in one uncertain number
due to uncertainty in another.

Type functions

	The function is_ureal() can be used to
identify uncertain real numbers.

	The function is_ucomplex() can be used to
identify uncertain complex numbers.

Module contents

	
budget(y, influences=None, key='u', reverse=True, trim=0.01, max_number=None)

	Return a sequence of label-component of uncertainty pairs

	Parameters

	
	y (UncertainReal or UncertainComplex) – an uncertain number

	influences – a sequence of uncertain numbers

	key – the list sorting key

	reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – determines sorting order (forward or reverse)

	trim – remove components of uncertainty that are
less than trim times the largest component

	max_number – return no more than max_number components

A sequence of Influence namedtuples is
returned, each with the attributes label and u for a
component of uncertainty (see component()).

The argument influences can be used to select the influences
are that reported.

The argument key can be used to order the sequence
by the component of uncertainty or the label (u or label).

The argument reverse controls the sense of ordering.

The argument trim can be used to set a minimum relative
magnitude of components returned. Set trim=0 for a
complete list.

The argument max_number can be used to restrict the
number of components returned.

Example:

>>> x1 = ureal(1,1,label='x1')
>>> x2 = ureal(2,0.5,label='x2')
>>> x3 = ureal(3,0.1,label='x3')
>>> y = (x1 - x2) / x3
>>> for l,u in reporting.budget(y):
... print("{0}: {1:G}".format(l,u))
...
x1: 0.333333
x2: 0.166667
x3: 0.0111111

>>> for l,u in reporting.budget(y,reverse=False):
... print("{0}: {1:G}".format(l,u))
...
x3: 0.0111111
x2: 0.166667
x1: 0.333333

	
k_factor(df=inf, p=95)

	Return the a coverage factor for an uncertainty interval

	Parameters

	
	df (float [https://docs.python.org/3/library/functions.html#float]) – the degrees-of-freedom (>1)

	p (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the coverage probability (%)

Evaluates the coverage factor for an uncertainty interval
with coverage probability p and degrees-of-freedom df
based on the Student t-distribution.

Example:

>>> reporting.k_factor(3)
3.182446305284263

	
k_to_dof(k, p=95)

	Return the dof corresponding to a univariate coverage factor k

	Parameters

	
	k (float [https://docs.python.org/3/library/functions.html#float]) – coverage factor (>0)

	p (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – coverage probability (%)

Evaluates the degrees-of-freedom given a coverage factor for
an uncertainty interval with coverage probability p
based on the Student t-distribution.

Example:

>>> reporting.k_to_dof(2.0,95)
60.43756442698591

	
k2_factor_sq(df=inf, p=95)

	Return a squared coverage factor for an elliptical uncertainty region

	Parameters

	
	df (float [https://docs.python.org/3/library/functions.html#float]) – the degrees-of-freedom (>=2)

	p (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the coverage probability (%)

Evaluates the square of the coverage factor for an elliptical uncertainty
region with coverage probability p and df degrees of freedom
based on the F-distribution.

Example:

>>> reporting.k2_factor_sq(3)
 56.99999999999994

	
k2_to_dof(k2, p=95)

	Return the dof corresponding to a bivariate coverage factor k2

	Parameters

	
	k2 (float [https://docs.python.org/3/library/functions.html#float]) – coverage factor (>0)

	p (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – coverage probability (%)

Evaluates a number of degrees-of-freedom given a coverage
factor for an elliptical uncertainty region with coverage
probability p based on the F-distribution.

Example:

>>> reporting.k2_to_dof(2.6,95)
34.35788424389927

	
u_component(y, x)

	Return the component of uncertainty in y due to x

If x and y are uncertain real numbers, return a float.

If y or x is an uncertain complex number, return
a 4-element sequence of float, containing the components of
the uncertainty matrix.

Otherwise, return 0.

Example:

>>> x = ureal(3,1)
>>> y = 3 * x
>>> reporting.u_component(y,x)
3.0

>>> q = ucomplex(2,1)
>>> r = ucomplex(3,1)
>>> z = q * r
>>> reporting.u_component(z,q)
ComponentOfUncertainty(rr=3.0, ri=-0.0, ir=0.0, ii=3.0)

>>> q = ucomplex(2,1)
>>> z = magnitude(q) # uncertain real numbers
>>> reporting.u_component(z,q)
ComponentOfUncertainty(rr=1.0, ri=0.0, ir=0.0, ii=0.0)

	
is_ureal(x)

	Return True if x is an uncertain real number

Example:

>>> x = ureal(1,1)
>>> reporting.is_ureal(x)
True

	
is_ucomplex(z)

	Return True if z is an uncertain complex number

Example:

>>> z = ucomplex(1+2j,(0.1,0.2))
>>> reporting.is_ucomplex(z)
True

	
v_bar(cv)

	Return the trace of cv divided by 2

	Parameters

	cv (4-element sequence of float) – a variance-covariance matrix

	Returns

	float

Example:

>>> x1 = 1-.5j
>>> x2 = .2+7.1j
>>> z1 = ucomplex(x1,(1,.2))
>>> z2 = ucomplex(x2,(.2,1))
>>> y = z1 * z2
>>> y.v
VarianceCovariance(rr=2.3464, ri=1.8432, ir=1.8432, ii=51.4216)
>>> reporting.v_bar(y.v)
26.884

	
u_bar(ucpt)

	Return the magnitude of a component of uncertainty

	Parameters

	ucpt (float [https://docs.python.org/3/library/functions.html#float] or 4-element sequence of float) – a component of uncertainty

If ucpt is a sequence, return the root-sum-square
of the elements divided by \(\sqrt{2}\)

If ucpt is a number, return the absolute value.

Example:

>>> x1 = 1-.5j
>>> x2 = .2+7.1j
>>> z1 = ucomplex(x1,1)
>>> z2 = ucomplex(x2,1)
>>> y = z1 * z2
>>> dy_dz1 = reporting.u_component(y,z1)
>>> dy_dz1
ComponentOfUncertainty(rr=0.2, ri=-7.1, ir=7.1, ii=0.2)
>>> reporting.u_bar(dy_dz1)
7.102816342831905

persistence module

Class

An Archive object can be used to marshal a set of uncertain numbers
for storage, or restore a set of uncertain numbers from storage.

Python pickle is used for the storage mechanism.

Functions

An archive can be pickled and stored in a file, or a string.

Functions for storing and retrieving a pickled archive file are

	load()

	dump()

Functions for storing and retrieving a pickled archive string are

	dumps()

	loads()

Module contents

	
class Archive

	An Archive object can be used to marshal a set of uncertain numbers
for storage, or restore a set of uncertain numbers from storage.

	
__getitem__(key)

	Extract an uncertain number

key - the name of the archived number

	
__len__()

	Return the number of entries

	
__setitem__(key, value)

	Add an uncertain number to the archive

Example:

>>> a = Archive()
>>> x = ureal(1,1)
>>> y = ureal(2,1)
>>> a['x'] = x
>>> a['fred'] = y

	
add(**kwargs)

	Add entries name = uncertain-number to the archive

Example:

>>> a = Archive()
>>> x = ureal(1,1)
>>> y = ureal(2,1)
>>> a.add(x=x,fred=y)

	
extract(*args)

	Extract one or more uncertain numbers

	Parameters

	args – names of archived uncertain numbers

If just one name is given, a single uncertain
number is returned, otherwise a sequence of
uncertain numbers is returned.

Example:

>>> x, fred = a.extract('x','fred')
>>> harry = a.extract('harry')

	
items()

	Return a list of name -to- uncertain-number pairs

	
iteritems()

	Return an iterator of name -to- uncertain-number pairs

	
iterkeys()

	Return an iterator for names

	
itervalues()

	Return an iterator for uncertain numbers

	
keys()

	Return a list of names

	
values()

	Return a list of uncertain numbers

	
load(file)

	Load an archive from a file

	Parameters

	file – a file object opened in binary
read mode (with ‘rb’)

Several archives can be extracted from
one file by repeatedly calling this function.

	
dump(file, ar)

	Save an archive in a file

	Parameters

	
	file – a file object opened in binary
write mode (with ‘wb’)

	ar – an Archive object

Several archives can be saved in a file
by repeated use of this function.

	
dumps(ar, protocol=4)

	Return a string representation of the archive

	Parameters

	
	ar – an Archive object

	protocol – encoding type

Possible values for protocol are described in the
Python documentation for the ‘pickle’ module.

protocol=0 creates an ASCII string, but note
that many (special) linefeed characters are embedded.

	
loads(s)

	Return an archive object restored from a string representation

	Parameters

	s – a string created by dumps()

named-tuples

A number of namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple] class are used in GTC to return the results of calculations.

	
class VarianceAndDof(cv, df)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Values of the variance and degrees of freedom.

	
cv

	Variance.

	
df

	float [https://docs.python.org/3/library/functions.html#float]: Degrees of freedom.

	
class VarianceCovariance(rr, ri, ir, ii)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Values of variance-covariance for a complex quantity

	
rr

	float [https://docs.python.org/3/library/functions.html#float]: variance in the real component

	
ri

	float [https://docs.python.org/3/library/functions.html#float]: covariance between th real and imaginary components

	
ir

	float [https://docs.python.org/3/library/functions.html#float]: covariance between th real and imaginary components

	
ii

	float [https://docs.python.org/3/library/functions.html#float]: variance in the imaginary component

	
class StandardUncertainty(real, imag)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Standard uncertainty values of a complex quantity

	
real

	float [https://docs.python.org/3/library/functions.html#float]: standard uncertainty in the real component

	
imag

	float [https://docs.python.org/3/library/functions.html#float]: standard uncertainty in the imaginary component

	
class StandardDeviation(real, imag)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Standard deviation values of a complex quantity

	
real

	float [https://docs.python.org/3/library/functions.html#float]: standard deviation in the real component

	
imag

	float [https://docs.python.org/3/library/functions.html#float]: standard deviation in the imaginary component

	
class ComponentOfUncertainty(rr, ri, ir, ii)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Component of uncertainty values for a complex quantity

	
rr

	float [https://docs.python.org/3/library/functions.html#float]: real component with respect to real component

	
ri

	float [https://docs.python.org/3/library/functions.html#float]: real component with respect to imaginary component

	
ir

	float [https://docs.python.org/3/library/functions.html#float]: imaginary component with respect to real component

	
ii

	float [https://docs.python.org/3/library/functions.html#float]: imaginary component with respect to imaginary component

	
class Influence(label, u)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: label and value of a component of uncertainty

	
label

	str [https://docs.python.org/3/library/stdtypes.html#str]: influence quantity label

	
u

	float [https://docs.python.org/3/library/functions.html#float]: component of uncertainty due to influence quantity

	
class CovarianceMatrix(rr, ri, ir, ii)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Values of covariance for a pair of quantities x and y

	
rr

	float [https://docs.python.org/3/library/functions.html#float]: covariance between x.real and y.real

	
ri

	float [https://docs.python.org/3/library/functions.html#float]: covariance between x.real and y.imag

	
ir

	float [https://docs.python.org/3/library/functions.html#float]: covariance between x.imag and y.real

	
ii

	float [https://docs.python.org/3/library/functions.html#float]: covariance between x.imag and y.imag

	
class CorrelationMatrix(rr, ri, ir, ii)

	namedtuple [https://docs.python.org/3/library/collections.html#collections.namedtuple]: Correlation coefficients for a pair of quantities x and y

	
rr

	float [https://docs.python.org/3/library/functions.html#float]: correlation between x.real and y.real

	
ri

	float [https://docs.python.org/3/library/functions.html#float]: correlation between x.real and y.imag

	
ir

	float [https://docs.python.org/3/library/functions.html#float]: correlation between x.imag and y.real

	
ii

	float [https://docs.python.org/3/library/functions.html#float]: correlation between x.imag and y.imag

License

MIT License

Copyright (c) 2018 Measurement Standards Laboratory of New Zealand

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Developers

	Blair Hall

	Joseph Borbely

Release Notes

Version 1.0.0 (2018.11.16)

The initial release of the Python code version of the GUM Tree Calculator.

The source code was derived from the stand-alone GUM Tree Calculator version 0.9.11, which is available from the MSL web site [https://www.measurement.govt.nz/resources] . The new version has made some significant changes to the data structures used, with accompanying changes to the underlying algorithms.

The application programmer interface in GTC 1.0.0 remains very close to that provided in GTC 0.9.11, although not all functions in GTC 0.9.11 are available yet. It is our intention to provide the remainder in forthcoming releases.

The most significant change has been to the method of storing uncertain numbers. The archive module in GTC 0.9.11 was replaced in GTC 1.0.0 by the persistence module. So, archives created using GTC 0.9.11 are not interchangeable with GTC 1.0.0.

 Python Module Index

 c |
 f |
 p |
 r |
 t

 		 	

 		
 c	

 	
 	
 core	

 		 	

 		
 f	

 	
 	
 function	

 		 	

 		
 p	

 	
 	
 persistence	

 		 	

 		
 r	

 	
 	
 reporting	

 		 	

 		
 t	

 	
 	
 type_a	

 	
 	
 type_b	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | X

_

 	
 	__getitem__() (Archive method)

 	
 	__len__() (Archive method)

 	__setitem__() (Archive method)

A

 	
 	acos() (in module core)

 	acosh() (in module core)

 	add() (Archive method)

 	Archive (class in persistence)

 	arcsine() (in module type_b)

 	
 	asin() (in module core)

 	asinh() (in module core)

 	atan() (in module core)

 	atan2() (in module core)

 	atanh() (in module core)

B

 	
 	budget() (in module reporting)

C

 	
 	complex_to_seq() (in module function)

 	component() (in module core)

 	ComponentOfUncertainty (class in named_tuples)

 	conjugate() (UncertainComplex method)

 	(UncertainReal method)

 	constant() (in module core)

 	
 	core (module)

 	CorrelationMatrix (class in named_tuples)

 	cos() (in module core)

 	cosh() (in module core)

 	CovarianceMatrix (class in named_tuples)

 	cv (VarianceAndDof attribute)

D

 	
 	df (UncertainComplex attribute)

 	(UncertainReal attribute)

 	(VarianceAndDof attribute)

 	
 	dof() (in module core)

 	dump() (in module persistence)

 	dumps() (in module persistence)

E

 	
 	estimate() (in module type_a)

 	estimate_digitized() (in module type_a)

 	
 	exp() (in module core)

 	extract() (Archive method)

F

 	
 	function (module)

G

 	
 	get_correlation() (in module core)

 	
 	get_covariance() (in module core)

I

 	
 	ii (ComponentOfUncertainty attribute)

 	(CorrelationMatrix attribute)

 	(CovarianceMatrix attribute)

 	(VarianceCovariance attribute)

 	imag (StandardDeviation attribute)

 	(StandardUncertainty attribute)

 	(UncertainReal attribute)

 	Influence (class in named_tuples)

 	ir (ComponentOfUncertainty attribute)

 	(CorrelationMatrix attribute)

 	(CovarianceMatrix attribute)

 	(VarianceCovariance attribute)

 	
 	is_ucomplex() (in module reporting)

 	is_ureal() (in module reporting)

 	items() (Archive method)

 	iteritems() (Archive method)

 	iterkeys() (Archive method)

 	itervalues() (Archive method)

K

 	
 	k2_factor_sq() (in module reporting)

 	k2_to_dof() (in module reporting)

 	
 	k_factor() (in module reporting)

 	k_to_dof() (in module reporting)

 	keys() (Archive method)

L

 	
 	label (Influence attribute)

 	(UncertainComplex attribute)

 	(UncertainReal attribute)

 	label() (in module core)

 	
 	load() (in module persistence)

 	loads() (in module persistence)

 	log() (in module core)

 	log10() (in module core)

M

 	
 	mag_squared() (in module core)

 	magnitude() (in module core)

 	mean() (in module function)

 	(in module type_a)

 	
 	multi_estimate_complex() (in module type_a)

 	multi_estimate_real() (in module type_a)

 	multiple_ucomplex() (in module core)

 	multiple_ureal() (in module core)

P

 	
 	persistence (module)

 	
 	phase() (in module core)

 	pow() (in module core)

R

 	
 	r (UncertainComplex attribute)

 	real (StandardDeviation attribute)

 	(StandardUncertainty attribute)

 	(UncertainReal attribute)

 	reporting (module)

 	result() (in module core)

 	ri (ComponentOfUncertainty attribute)

 	(CorrelationMatrix attribute)

 	(CovarianceMatrix attribute)

 	(VarianceCovariance attribute)

 	
 	rr (ComponentOfUncertainty attribute)

 	(CorrelationMatrix attribute)

 	(CovarianceMatrix attribute)

 	(VarianceCovariance attribute)

S

 	
 	seq_to_complex() (in module function)

 	set_correlation() (in module core)

 	sin() (in module core)

 	sinh() (in module core)

 	
 	sqrt() (in module core)

 	standard_deviation() (in module type_a)

 	standard_uncertainty() (in module type_a)

 	StandardDeviation (class in named_tuples)

 	StandardUncertainty (class in named_tuples)

T

 	
 	tan() (in module core)

 	tanh() (in module core)

 	
 	triangular() (in module type_b)

 	type_a (module)

 	type_b (module)

U

 	
 	u (Influence attribute)

 	(UncertainComplex attribute)

 	(UncertainReal attribute)

 	u_bar() (in module reporting)

 	u_component() (in module reporting)

 	u_shaped() (in module type_b)

 	ucomplex() (in module core)

 	
 	UncertainComplex (class in lib)

 	UncertainReal (class in lib)

 	uncertainty() (in module core)

 	uniform() (in module type_b)

 	uniform_disk() (in module type_b)

 	uniform_ring() (in module type_b)

 	unknown_phase_product() (in module type_b)

 	ureal() (in module core)

V

 	
 	v (UncertainComplex attribute)

 	(UncertainReal attribute)

 	v_bar() (in module reporting)

 	value() (in module core)

 	
 	values() (Archive method)

 	variance() (in module core)

 	variance_covariance_complex() (in module type_a)

 	VarianceAndDof (class in named_tuples)

 	VarianceCovariance (class in named_tuples)

X

 	
 	x (UncertainComplex attribute)

 	(UncertainReal attribute)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 GUM Tree Calculator

 		
 Introduction

 		
 Measurement error

 		
 Measurement models

 		
 Uncertain Numbers

 		
 Uncertain real numbers

 		
 Uncertain complex numbers

 		
 Uncertain Number Attributes

 		
 Uncertain numbers and measurement errors

 		
 Installing GTC

 		
 From PyPI

 		
 From the Source Code

 		
 Dependencies

 		
 Core functions

 		
 Core Functions

 		
 Uncertain Number Types

 		
 Uncertain Real Numbers

 		
 Uncertain Complex Numbers

 		
 Evaluating type-A uncertainty

 		
 Sample estimates

 		
 Module contents

 		
 Evaluating type-B uncertainty

 		
 Real-valued problems

 		
 Complex-valued problems

 		
 A table of distributions

 		
 Module contents

 		
 Additional functions

 		
 Utility functions

 		
 Module contents

 		
 Reporting

 		
 Reporting functions

 		
 Uncertainty functions

 		
 Type functions

 		
 Module contents

 		
 Storage

 		
 Class

 		
 Functions

 		
 Module contents

 		
 Named tuples

 		
 License

 		
 Authors

 		
 Change Log

 		
 Version 1.0.0 (2018.11.16)

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

