
GUM Tree Calculator Documentation
Release 1.2.0

Measurement Standards Laboratory of New Zealand

Oct 16, 2019

Contents

1 Introduction 1

2 GTC Modules 7

3 Examples 53

4 Other topics 89

5 Release Notes 93

Python Module Index 97

Index 99

i

ii

CHAPTER 1

Introduction

1.1 Installing GTC

1.1.1 From PyPI

GTC is available as a PyPI package. It can be installed using pip

pip install gtc

This obtains the most recent stable release of GTC and is the recommended way to install the package.

1.1.2 From the Source Code

GTC is actively developed on GitHub, where the source code is available.

The easiest way to install GTC with the latest features and updates is to run

pip install https://github.com/MSLNZ/GTC/archive/master.zip

Alternatively, you can either clone the public repository

git clone git://github.com/MSLNZ/GTC.git

or download the tarball (Unix) or zipball (Windows) and then extract it.

Once you have a copy of the source code, you can install it by running

cd GTC
pip install .

1.1.3 Dependencies

• Python 2.7, 3.5+

• scipy

1

https://pypi.org/project/GTC/
https://github.com/MSLNZ/GTC/
https://github.com/MSLNZ/GTC/archive/master.tar.gz
https://github.com/MSLNZ/GTC/archive/master.zip
https://www.scipy.org/

GUM Tree Calculator Documentation, Release 1.2.0

1.2 Introduction

• Measurement error

– Measurement models

• Uncertain Numbers

– Uncertain real numbers

* Example: an electrical circuit

* Example: height of a flag pole

– Uncertain complex numbers

* Example: AC electric circuit

– Uncertain Number Attributes

– Uncertain numbers and measurement errors

The GUM Tree calculator (GTC) is a data processing tool that uses uncertain numbers to represent measured
quantities. GTC automates evaluation of uncertainty in derived quantities when they are calculated from measured
data.

1.2.1 Measurement error

A measurement obtains information about a quantity, but the quantity itself (the measurand) is never determined
exactly. There is always some measurement error involved. This can be expressed as an equation, where the
unknown measurand is 𝑌 and the measurement result is 𝑦, we have

𝑦 = 𝑌 + 𝐸𝑦 ,

where 𝐸𝑦 is the measurement error. So, the result, 𝑦, is only an approximate value for the quantity of interest 𝑌 .

This is how ‘uncertainty’ arises. After any measurement, we are faced with uncertainty about what will happen if
we take the measured value 𝑦 and use it for the (unknown) value 𝑌 .

For example, suppose the speed of a car is measured by a law enforcement officer. The officer needs to decide
whether, in fact, a car was travelling faster than the legal limit but this simple fact cannot be determined, because
the actual speed 𝑌 remains unknown. The measured value 𝑦 might indicate that the car was speeding when in fact
it was not, or that it was not speeding when in fact it was. In practice, a decision rule that takes account of the
measurement uncertainty must be used. In this example, the rule will probably err on the side of caution (a few
speeding drivers will escape rather than unfairly accusing good drivers of speeding).

Like the measurand, the measurement error 𝐸𝑦 will never be known. At best, its behaviour can be described in
statistical terms. This leads to technical meanings of the word ‘uncertainty’. For instance, the term ‘standard
uncertainty’ refers to the standard deviation of a statistical distribution associated with an unpredictable quantity.

Measurement models

A measurement error comes about because there are unpredictable factors that influence the outcome of a mea-
surement process. In a formal analysis, these factors must be identified and included in a measurement model,
which defines the measurand in terms of all other significant influence quantities. In mathematical terms, we write

𝑌 = 𝑓(𝑋1, 𝑋2, · · ·) ,

where the 𝑋𝑖 are influence quantities.

2 Chapter 1. Introduction

GUM Tree Calculator Documentation, Release 1.2.0

Once again, the actual quantities 𝑋1, 𝑋2, · · · are not known; only estimates 𝑥1, 𝑥2, · · · are available. These are
used to calculate a measured value that is approximately equal to the measurand

𝑦 = 𝑓(𝑥1, 𝑥2, · · ·) .

1.2.2 Uncertain Numbers

An uncertain number is a data-type designed to represent a measured quantity. It encapsulates information about
the measurement, including the measured value and its uncertainty.

Uncertain numbers are used when processing measurement data; that is, to evaluate measurement models. The
inputs to a model (like 𝑋1, 𝑋2, · · · above) will be defined as uncertain numbers using measurement data. Calcu-
lations then produce an uncertain number for the measurand (𝑌).

There are two types of uncertain number: one for real-valued quantities and one for complex-valued quantities. At
the very least, two pieces of information are needed to define an uncertain number: a value (that is, a measured,
or approximate, value of the quantity) and the uncertainty associated with the error in the measured value.

Uncertain real numbers

The function ureal() is usually the preferred way to define uncertain numbers representing real-valued quanti-
ties.

Example: an electrical circuit

Suppose the current flowing in an electrical circuit 𝐼 and the voltage across a circuit element 𝑉 have been mea-
sured.

The measured values are 𝑥𝑉 = 0.1 V and 𝑥𝐼 = 15 mA, with standard uncertainties 𝑢(𝑥𝑉) = 1 mV and 𝑢(𝑥𝐼) =
0.5 mA, respectively.

Uncertain numbers for 𝑉 and 𝐼 are defined by

>>> V = ureal(0.1,1E-3)
>>> I = ureal(15E-3,0.5E-3)

and then the resistance can be calculated directly using Ohm’s law

>>> R = V/I
>>> print(R)
6.67(23)

The measured value of resistance 𝑥𝑅 = 6.67 Ω is an estimate (approximation) for 𝑅, the standard uncertainty in
𝑥𝑅 as an estimate of 𝑅 is 0.23 Ω.

Example: height of a flag pole

Suppose a flag is flying from a pole that is 15 metres away from an observer (with an uncertainty of 3 cm). The
angle between horizontal and line-of-sight to the top of the pole is 38 degrees (with an uncertainty of 2 degrees).
How high is the top of the pole?

A measurement model should express a relationship between the quantities involved: the height of the pole 𝐻 , the
distance to the base of the pole 𝐵 and the line-of-sight angle Φ,

𝐻 = 𝐵 tan Φ .

To calculate the height, we create uncertain numbers representing the measured quantities and use the model

1.2. Introduction 3

GUM Tree Calculator Documentation, Release 1.2.0

>>> B = ureal(15,3E-2)
>>> Phi = ureal(math.radians(38),math.radians(2))
>>> H = B * tan(Phi)
>>> print(H)
11.72(84)

The result 𝑥𝐻 = 11.7 metres is our best estimate of the height 𝐻 . The standard uncertainty of this value, as an
estimate of the actual height, is 0.8 metres.

It is important to note that uncertain-number calculations are open ended. In this case, for example, we can keep
going and evaluate what the observer angle would be at 20 metres from the pole (the uncertainty in the base
distance remains 3 cm)

>>> B_20 = ureal(20,3E-2)
>>> Phi_20 = atan(H/B_20)
>>> print(Phi_20)
0.530(31)
>>> Phi_20_deg= Phi_20 * 180./math.pi
>>> print(Phi_20_deg)
30.4(1.8)

The angle of 30.4 degrees at 20 metres from the pole has a standard uncertainty of 1.8 degrees.

Uncertain complex numbers

The function ucomplex() is usually preferred for defining uncertain complex numbers.

Example: AC electric circuit

Suppose measurements have been made of: the alternating current 𝑖 flowing in an electrical circuit, the voltage
𝑣 across a circuit element and the phase 𝜑 of the voltage with respect to the current. The measured values are:
𝑥𝑣 ≈ 4.999 V, 𝑥𝑖 ≈ 19.661 mA and 𝑥𝜑 ≈ 1.04446 rad, with standard uncertainties 𝑢(𝑥𝑣) = 0.0032 V, 𝑢(𝑥𝑖) =
0.0095 mA and 𝑢(𝑥𝜑) = 0.00075 rad, respectively.

Uncertain numbers for the quantities 𝑣, 𝑖 and 𝜑 can be defined

>>> v = ucomplex(complex(4.999,0),(0.0032,0))
>>> i = ucomplex(complex(19.661E-3,0),(0.0095E-3,0))
>>> phi = ucomplex(complex(0,1.04446),(0,0.00075))

Note, the uncertainty argument is a pair of numbers in these definitions. These are the standard uncertainties
associated with measured values of the real and imaginary components.

The complex impedance is

>>> z = v * exp(phi) / i
>>> print(z)
(127.73(19)+219.85(20)j)

We see that our best estimate of the impedance is the complex value (127.73 + j219.85) Ω. The standard uncer-
tainty in the real component is 0.19 Ω and the standard uncertainty in the imaginary component is 0.20 Ω. There
is also a small correlation between our estimates of the real and imaginary components

>>> get_correlation(z)
0.0582038103158399...

If a polar representation of the impedance is preferred,

4 Chapter 1. Introduction

GUM Tree Calculator Documentation, Release 1.2.0

>>> print(magnitude(z))
254.26(20)
>>> print(phase(z))
1.04446(75)

Uncertain Number Attributes

Uncertain number objects have attributes that provide access to: the measured value (the estimate), the uncertainty
(of the estimate) and the degrees of freedom (associated with the uncertainty) (see UncertainReal).

Continuing with the flagpole example, the attributes x, u, df obtain the value, the uncertainty and the degrees-of-
freedom (which is infinity), respectively

>>> H.x
11.71928439760076...
>>> H.u
0.84353295110757...
>>> H.df
inf

Alternatively, there are functions that return the same attributes

>>> value(H)
11.71928439760076...
>>> uncertainty(H)
0.84353295110757...
>>> dof(H)
inf

Uncertain numbers and measurement errors

It is often is helpful to to formulate measurement models that explicitly acknowledge measurement errors. As we
said above, these errors are not known exactly; many will be residual quantities with estimates of zero or unity.
However, errors have a physical meaning and it is often useful to identify them in the model.

In the example above, errors associated with measured values of 𝐵 and Φ were not identified but we can do so now
by introducing the terms 𝐸𝑏 and 𝐸𝜑. The measured values 𝑏 = 15 m and 𝜑 = 38 deg are related to the quantities
of interest as

𝐵 = 𝑏− 𝐸𝑏

Φ = 𝜑− 𝐸𝜑

Our best estimates of these errors are trivial, 𝐸𝑏 ≈ 0 and 𝐸𝜑 ≈ 0, but the actual values are unpredictable
and give rise to uncertainty in the height of the pole. It is appropriate to attribute the standard uncertainties
𝑢(𝐸𝑏) = 3 × 102 m and 𝑢(𝐸𝜑) = 2 deg to measurement errors, rather than associate uncertainty with the fixed
quantities 𝐵 and Φ.

The calculation becomes

>>> B = 15 - ureal(0,3E-2,label='E_b')
>>> Phi = math.radians(38) - ureal(0,math.radians(2),label='E_phi')
>>> H = B*tan(Phi)
>>> print(H)
11.72(84)

This reflects our understanding of the problem better: the numbers 𝑏 = 15 and 𝜑 = 38 are known, there is nothing
‘uncertain’ about their values. What is uncertain are the unknown measurement errors 𝐸𝑏 and 𝐸𝜑.

When defining uncertain numbers, setting labels allows an uncertainty budget to be displayed later (see
budget()). For instance,

1.2. Introduction 5

GUM Tree Calculator Documentation, Release 1.2.0

>>> for cpt in rp.budget(H):
... print("{0.label}: {0.u:.3f}".format(cpt))
...
E_phi: 0.843
E_b: 0.023

6 Chapter 1. Introduction

CHAPTER 2

GTC Modules

2.1 Core Functions and Classes

• Core Functions

• Uncertain Number Types

– Uncertain Real Numbers

– Uncertain Complex Numbers

2.1.1 Core Functions

Functions that create elementary uncertain numbers and functions that access uncertain-number attributes, are
defined in the core module. There is also a set of standard mathematical functions (e.g.: sqrt(), sin(),
log10(), etc) for uncertain numbers. These functions can be applied to the numeric Python types too.

All core functions are automatically imported into the GTC namespace (i.e., they are available after from GTC
import *).

ureal(x, u, df=inf, label=None, independent=True)
Create an elementary uncertain real number

Parameters

• x (float) – the value (estimate)

• u (float) – the standard uncertainty

• df (float) – the degrees-of-freedom

• label (str) – a string label

• independent (bool) – not correlated with other UNs

Return type UncertainReal

Example:

7

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

GUM Tree Calculator Documentation, Release 1.2.0

>>> ur = ureal(2.5,0.5,3,label='x')
>>> ur
ureal(2.5,0.5,3.0, label='x')

multiple_ureal(x_seq, u_seq, df, label_seq=None)
Return a sequence of related elementary uncertain real numbers

Parameters

• x_seq – a sequence of values (estimates)

• u_seq – a sequence of standard uncertainties

• df – the degrees-of-freedom

• label_seq – a sequence of labels

Return type a sequence of UncertainReal

Defines an set of uncertain real numbers with the same number of degrees-of-freedom.

Correlation between any pairs of this set of uncertain numbers defined will not invalidate degrees-of-
freedom calculations. (see: R Willink, Metrologia 44 (2007) 340-349, Sec. 4.1)

Example:

Example from GUM-H2
>>> x = [4.999,19.661E-3,1.04446]
>>> u = [3.2E-3,9.5E-6,7.5E-4]
>>> labels = ['V','I','phi']
>>> v,i,phi = multiple_ureal(x,u,4,labels)

>>> set_correlation(-0.36,v,i)
>>> set_correlation(0.86,v,phi)
>>> set_correlation(-0.65,i,phi)

>>> r = v/i*cos(phi)
>>> r
ureal(127.732169928102...,0.0699787279883717...,4.0)

multiple_ucomplex(x_seq, u_seq, df, label_seq=None)
Return a sequence of uncertain complex numbers

Parameters

• x_seq – a sequence of complex values

• u_seq – a sequence of standard uncertainties or covariances

• df – the degrees-of-freedom

• label_seq – a sequence of labels for the uncertain numbers

Return type a sequence of UncertainComplex

This function defines an set of uncertain complex numbers with the same number of degrees-of-freedom.

Correlation between any pairs of these uncertain numbers will not invalidate degrees-of-freedom calcula-
tions. (see: R Willink, Metrologia 44 (2007) 340-349, Sec. 4.1)

Example:

GUM Appendix H2
>>> values = [4.999+0j,0.019661+0j,1.04446j]
>>> uncert = [(0.0032,0.0),(0.0000095,0.0),(0.0,0.00075)]
>>> v,i,phi = multiple_ucomplex(values,uncert,5)

>>> set_correlation(-0.36,v.real,i.real)

(continues on next page)

8 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

>>> set_correlation(0.86,v.real,phi.imag)
>>> set_correlation(-0.65,i.real,phi.imag)

>>> z = v * exp(phi)/ i
>>> print(z)
(127.732(70)+219.847(296)j)
>>> z.r
-28.5825760885182...

ucomplex(z, u, df=inf, label=None, independent=True)
Create an elementary uncertain complex number

Parameters

• z (complex) – the value (estimate)

• u (float, 2-element or 4-element sequence) – the standard uncertainty
or variance

• df (float) – the degrees-of-freedom

Return type UncertainComplex

Raises ValueError if df or u have illegal values.

u can be a float, a 2-element or 4-element sequence.

If u is a float, the standard uncertainty in both the real and imaginary components is taken to be u.

If u is a 2-element sequence, the first element is taken to be the standard uncertainty in the real component
and the second element is taken to be the standard uncertainty in the imaginary component.

If u is a 4-element sequence, the sequence is interpreted as a variance-covariance matrix.

Examples:

>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')
>>> uc
ucomplex((1+2j), u=[0.5,0.5], r=0.0, df=3.0, label=x)

>>> cv = (1.2,0.7,0.7,2.2)
>>> uc = ucomplex(0.2-.5j, cv)
>>> variance(uc)
VarianceCovariance(rr=1.1999999999999997, ri=0.7, ir=0.7, ii=2.2)

constant(x, label=None)
Create a constant uncertain number (with no uncertainty)

Parameters x (float or complex) – a number

Return type UncertainReal or UncertainComplex

If x is complex, return an uncertain complex number.

If x is real return an uncertain real number.

Example:

>>> e = constant(math.e,label='Euler')
>>> e
ureal(2.718281828459045,0.0,inf, label='Euler')

value(x)
Return the value

Returns a complex number if x is an uncertain complex number

2.1. Core Functions and Classes 9

https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex

GUM Tree Calculator Documentation, Release 1.2.0

Returns a real number if x is an uncertain real number

Returns x otherwise.

Example:

>>> un = ureal(3,1)
>>> value(un)
3.0
>>> un.x
3.0

uncertainty(x)
Return the standard uncertainty

If x is an uncertain complex number, return a 2-element sequence containing the standard uncertainties of
the real and imaginary components.

If x is an uncertain real number, return the standard uncertainty.

Otherwise, return 0.

Examples:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> uncertainty(ur)
0.5
>>> ur.u
0.5

>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')
>>> uncertainty(uc)
StandardUncertainty(real=0.5, imag=0.5)

variance(x)
Return the standard variance

If x is an uncertain real number, return the standard variance.

If x is an uncertain complex number, return a 4-element sequence containing elements of the variance-
covariance matrix.

Otherwise, return 0.

Examples:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> variance(ur)
0.25
>>> ur.v
0.25

>>> uc = ucomplex(1+2j,(.5,.5),3,label='x')
>>> variance(uc)
VarianceCovariance(rr=0.25, ri=0.0, ir=0.0, ii=0.25)

dof(x)
Return the degrees-of-freedom

Returns inf when the degrees of freedom is greater than 1E6

Examples:

>>> ur = ureal(2.5,0.5,3,label='x')
>>> dof(ur)
3.0

(continues on next page)

10 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

>>> ur.df
3.0

>>> uc = ucomplex(1+2j,(.3,.2),3,label='x')
>>> dof(uc)
3.0

label(x)
Return the label

component(y, x)
Return the magnitude of the component of uncertainty in y due to x.

Parameters

• y (UncertainReal or UncertainComplex) – an uncertain number

• x (UncertainReal or UncertainComplex) – an uncertain number

Return type float

If x and y are uncertain real, the function calls reporting.u_component() and returns the magnitude
of the result.

If either x or y is uncertain complex, the returned value represents the magnitude of the component
of uncertainty matrix (this is obtained by applying reporting.u_bar() to the result obtained from
reporting.u_component()).

If either x or y is a number, zero is returned.

component can also e used in conjunction with result() to evaluate a component of uncertainty with
respect to an intermediate uncertain number.

Examples:

>>> x1 = ureal(2,1)
>>> x2 = ureal(5,1)
>>> y = x1/x2
>>> reporting.u_component(y,x2)
-0.08
>>> component(y,x2)
0.08

>>> z1 = ucomplex(1+2j,1)
>>> z2 = ucomplex(3-2j,1)
>>> y = z1 - z2
>>> reporting.u_component(y,z2)
ComponentOfUncertainty(rr=-1.0, ri=0.0, ir=0.0, ii=-1.0)
>>> component(y,z2)
1.0

>>> I = ureal(1E-3,1E-5)
>>> R = ureal(1E3,1)
>>> V = result(I*R)
>>> P = V**2/R
>>> component(P,V)
2.0099751242241783e-05

get_covariance(arg1, arg2=None)
Evaluate covariance.

The input arguments can be a pair of uncertain numbers, or a single uncertain complex number.

When a pair of uncertain real numbers is supplied, the correlation between the two arguments is returned as
a real number.

2.1. Core Functions and Classes 11

https://docs.python.org/3/library/functions.html#float

GUM Tree Calculator Documentation, Release 1.2.0

When one, or both, arguments are uncertain complex numbers, a CovarianceMatrix is returned, rep-
resenting a 2-by-2 variance-covariance matrix.

get_correlation(arg1, arg2=None)
Return correlation

The input arguments may be a pair of uncertain numbers, or a single uncertain complex number.

When a pair of uncertain real numbers is provided, the correlation between the arguments is returned as a
real number.

When one, or both, arguments are uncertain complex numbers, a CorrelationMatrix is returned,
representing a 2-by-2 matrix of correlation coefficients.

set_correlation(r, arg1, arg2=None)
Set correlation between elementary uncertain numbers

The input arguments can be a pair of uncertain numbers (the same type, real or complex), or a single
uncertain complex number.

The uncertain number arguments must be elementary uncertain numbers.

If the arguments have finite degrees of freedom, they must be declared together using either
multiple_ureal() or multiple_ucomplex().

If the uncertain number arguments have infinite degrees of freedom they can, alternatively, be declared by
setting the argument independent=False when calling ureal() or ucomplex().

A ValueError is raised when illegal arguments are used

When a pair of uncertain real numbers is provided, r is the correlation coefficient between them.

When a pair of uncertain complex number arguments is provided, r must be a 4-element sequence contain-
ing correlation coefficients between the components of the complex quantities.

Examples:

>>> x1 = ureal(2,1,independent=False)
>>> x2 = ureal(5,1,independent=False)
>>> set_correlation(.3,x1,x2)
>>> get_correlation(x1,x2)
0.3

>>> z = ucomplex(1+0j,(1,1),independent=False)
>>> z
ucomplex((1+0j), u=[1.0,1.0], r=0.0, df=inf)
>>> set_correlation(0.5,z)
>>> z
ucomplex((1+0j), u=[1.0,1.0], r=0.0, df=inf)

>>> x1 = ucomplex(1,(1,1),independent=False)
>>> x2 = ucomplex(1,(1,1),independent=False)
>>> correlation_mat = (0.25,0.5,0.75,0.5)
>>> set_correlation(correlation_mat,x1,x2)
>>> get_correlation(x1,x2)
CorrelationMatrix(rr=0.25, ri=0.5, ir=0.75, ii=0.5)

result(un, label=None)
Declare an uncertain number to be an intermediate result

Parameters

• un – an uncertain number or UncertainArray

• label – a string or sequence of strings

When un is an array, an UncertainArray is returned containing the intermediate uncertain number
objects.

12 Chapter 2. GTC Modules

https://docs.python.org/3/library/exceptions.html#ValueError

GUM Tree Calculator Documentation, Release 1.2.0

Note: This function does not affect the argument un. Rather, a new intermediate result object is created.
So, this function will usually be applied to a temporary object.

The component of uncertainty, or the sensitivity, of an uncertain number with respect to an intermediate
result can be evaluated.

Declaring intermediate results also enables the dependencies of uncertain numbers to be stored in an archive.

Parameters

• un – UncertainReal or UncertainComplex or UncertainArray

• label – str or a sequence of str

Return type UncertainReal or UncertainComplex or UncertainArray

Example:

>>> I = ureal(1.3E-3,0.01E-3)
>>> R = ureal(995,7)
>>> V = result(I*R)
>>> P = V**2/R
>>> component(P,V)
3.505784505642068e-05

cos(x)
Uncertain number cosine function

sin(x)
Uncertain number sine function

tan(x)
Uncertain number tangent function

acos(x)
Uncertain number arc-cosine function

Note: In the complex case there are two branch cuts: one extends right, from 1 along the real axis to ∞,
continuous from below; the other extends left, from -1 along the real axis to −∞, continuous from above.

asin(x)
Uncertain number arcsine function

Note: In the complex case there are two branch cuts: one extends right, from 1 along the real axis to ∞,
continuous from below; the other extends left, from -1 along the real axis to −∞, continuous from above.

atan(x)
Uncertain number arctangent function

Note: In the complex case there are two branch cuts: One extends from j along the imaginary axis to j∞,
continuous from the right. The other extends from −j along the imaginary axis to −j∞, continuous from
the left.

atan2(y, x)
Two-argument uncertain number arctangent function

Parameters

• x (UncertainReal) – abscissa

2.1. Core Functions and Classes 13

GUM Tree Calculator Documentation, Release 1.2.0

• y (UncertainReal) – ordinate

Note: this function is not defined for uncertain complex numbers (use phase())

Example:

>>> x = ureal(math.sqrt(3)/2,1)
>>> y = ureal(0.5,1)
>>> theta = atan2(y,x)
>>> theta
ureal(0.5235987755982989,1.0,inf)
>>> math.degrees(theta.x)
30.000000000000004

exp(x)
Uncertain number exponential function

pow(x, y)
Uncertain number power function

Raises x to the power of y

log(x)
Uncertain number natural logarithm

Note: In the complex case there is one branch cut, from 0 along the negative real axis to −∞, continuous
from above.

log10(x)
Uncertain number common logarithm (base-10)

Note: In the complex case there is one branch cut, from 0 along the negative real axis to −∞, continuous
from above.

sqrt(x)
Uncertain number square root function

Note: In the complex case there is one branch cut, from 0 along the negative real axis to −∞, continuous
from above.

sinh(x)
Uncertain number hyperbolic sine function

cosh(x)
Uncertain number hyperbolic cosine function

tanh(x)
Uncertain number hyperbolic tangent function

acosh(x)
Uncertain number hyperbolic arc-cosine function

Note: In the complex case there is one branch cut, extending left from 1 along the real axis to −∞,
continuous from above.

asinh(x)
Uncertain number hyperbolic arcsine function

14 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

Note: In the complex case there are two branch cuts: one extends from j along the imaginary axis to j∞,
continuous from the right; the other extends from −j along the imaginary axis to −j∞, continuous from the
left.

atanh(x)
Uncertain number hyperbolic arctangent function

Note: In the complex case there are two branch cuts: one extends from 1 along the real axis to ∞,
continuous from below; the other extends from -1 along the real axis to −∞, continuous from above.

mag_squared(x)
Return the squared magnitude of x.

Note: If x is an uncertain number, the magnitude squared is returned as an uncertain real number, otherwise
:func:abs(x)**2 is returned.

magnitude(x)
Return the magnitude of x

Note: If x is not an uncertain number type, returns abs(x).

phase(z)

Parameters z (UncertainComplex) – an uncertain complex number

Returns the phase in radians

Return type UncertainReal

2.1.2 Uncertain Number Types

There are two types of uncertain number, one to represent real-valued quantities (UncertainReal) and one to
represent real-complex quantities (UncertainComplex).

Uncertain Real Numbers

UncertainReal defines an uncertain-number object with attributes x, u, v and df, for the value,
uncertainty, variance and degrees-of-freedom, respectively, of the uncertain number.

The function ureal() creates elementary UncertainReal objects. For example,

>>> x = ureal(1.414141,0.01)
>>> x
ureal(1.414141,0.01,inf)

All logical comparison operations (e.g., <, >, ==, etc) applied to uncertain-number objects use the
value attribute. For example,

>>> un = ureal(2.5,1)
>>> un > 3
False
>>> un == 2.5
True

2.1. Core Functions and Classes 15

https://docs.python.org/3/library/functions.html#abs

GUM Tree Calculator Documentation, Release 1.2.0

When the value of an UncertainReal is converted to a string (e.g., by str, or by print()),
the precision displayed depends on the uncertainty. The two least significant digits of the value corre-
spond to the two most significant digits of the standard uncertainty. The value of standard uncertainty
is appended to the string between parentheses.

For example,

>>> x = ureal(1.414141,0.01)
>>> str(x)
'1.414(10)'
>>> print(x)
1.414(10)

When an UncertainReal is converted to its Python representation (e.g., by repr()) a string is
returned that shows the representation of the elements that define the uncertain number.

For example,

>>> x = ureal(1.4/3,0.01,5,label='x')
>>> repr(x)
"ureal(0.4666666666666666,0.01,5.0, label='x')"

class UncertainReal(x, u_comp, d_comp, i_comp, node=None)
An UncertainReal holds information about the measured value of a real-valued quantity

conjugate()
Return the complex conjugate

Return type UncertainReal

df
Return the degrees of freedom

Return type float

Note un.df is equivalent to dof(un)

Example::

>>> ur = ureal(2.5,0.5,3)
>>> ur.df
3.0

imag
Returns the imaginary component

label
The uncertain-number label

Return type str

Note un.label is equivalent to label(un)

Example::

>>> x = ureal(2.5,0.5,label='x')
>>> x.label
'x'

>>> label(x)
'x'

real
Return the real component

u
Return the standard uncertainty

16 Chapter 2. GTC Modules

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

GUM Tree Calculator Documentation, Release 1.2.0

Return type float

Note that un.u is equivalent to uncertainty(un)

Example:

>>> ur = ureal(2.5,0.5)
>>> ur.u
0.5

v
Return the standard variance

Return type float

Note that un.v is equivalent to variance(un)

Example::

>>> ur = ureal(2.5,0.5)
>>> ur.v
0.25

x
Return the value

Return type float

Note that un.x is equivalent to value(un)

Example::

>>> ur = ureal(2.5,0.5)
>>> ur.x
2.5

Uncertain Complex Numbers

UncertainComplex defines an uncertain-number object with attributes x, u, v and df, for the
value, uncertainty, variance-covariance matrix and degrees-of-freedom, respectively.

The function ucomplex() creates elementary UncertainComplex objects, for example

>>> z = ucomplex(1.333-0.121212j,(0.01,0.01))

Equality comparison operations (== and !=) applied to uncertain-complex-number objects use the
value attribute. For example,

>>> uc = ucomplex(3+3j,(1,1))
>>> uc == 3+3j
True

The built-in function abs() returns the magnitude of the value as a Python float (use
magnitude() if uncertainty propagation is required). For example,

>>> uc = ucomplex(1+1j,(1,1))
>>> abs(uc)
1.4142135623730951

>>> magnitude(uc)
ureal(1.4142135623730951,0.9999999999999999,inf)

When an UncertainComplex is converted to a string (e.g., by the str function or by print()),
the precision depends on the uncertainty.

2.1. Core Functions and Classes 17

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#abs
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#print

GUM Tree Calculator Documentation, Release 1.2.0

The lesser of the uncertainties in the real and imaginary components will determine the precision
displayed. The two least significant digits of the formated component values will correspond to the
two most significant digits of this standard uncertainty. Values of standard uncertainty are appended
to the component values between parentheses.

For example,

>>> z = ucomplex(1.333-0.121212j,(0.01,0.002))
>>> print(z)
(1.3330(100)-0.1212(20)j)

When an UncertainComplex is converted to its Python representation (e.g., by repr()), a
string is returned that shows the representation of the elements that define the uncertain number.

For example,

>>> z = ucomplex(1.333-0.121212j,(0.01,0.002))
>>> repr(z)
'ucomplex((1.333-0.121212j), u=[0.01,0.002], r=0.0, df=inf)'

class UncertainComplex(r, i)
An UncertainComplex holds information about the measured value of a complex-valued quantity

conjugate()
Return the complex conjugate

An UncertainComplex object is created by negating the imaginary component.

Return type UncertainComplex

df
Return the degrees-of-freedom

When the object is not an elementary uncertain number, the effective degrees-of-freedom is calculated
using the method described by Willink and Hall in Metrologia 2002, 39, pp 361-369.

Return type float

Note that uc.df is equivalent to dof(uc)

Example::

>>> uc = ucomplex(1+2j,(.3,.2),3)
>>> uc.df
3.0

imag
The imaginary component.

Type UncertainReal

label
The label attribute

Return type str

Note that‘‘un.label‘‘ is equivalent to label(un)

Example::

>>> z = ucomplex(2.5+.3j,(1,1),label='z')
>>> z.label
'z'

r
Return the correlation coefficient between real and imaginary components

Return type float

18 Chapter 2. GTC Modules

https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

GUM Tree Calculator Documentation, Release 1.2.0

real
The real component.

Type UncertainReal

u
Return standard uncertainties for the real and imaginary components

Return type 2-element sequence of float

Note that uc.u is equivalent to uncertainty(uc)

Example:

>>> uc = ucomplex(1+2j,(.5,.5))
>>> uc.u
StandardUncertainty(real=0.5, imag=0.5)

v
Return the variance-covariance matrix

The uncertainty of an uncertain complex number can be associated with a 4-element variance-
covariance matrix.

Return type 4-element sequence of float

Note that uc.v is equivalent to variance(uc)

Example:

>>> uc = ucomplex(1+2j,(.5,.5))
>>> uc.v
VarianceCovariance(rr=0.25, ri=0.0, ir=0.0, ii=0.25)

x
Return the value

Return type complex

Note that uc.x is equivalent to value(uc)

Example::

>>> uc = ucomplex(1+2j,(.3,.2))
>>> uc.x
(1+2j)

2.2 Evaluating type-A uncertainty

Type-A evaluation of uncertainty involves statistical analysis of data (in contrast to type-B evaluation, which uses
some means other than statistical analysis).

The shorter name ta has been defined as an alias for type_a, to resolve the names of objects defined in this
module.

2.2.1 Sample estimates

• estimate() returns an uncertain number defined from the statistics of a sample of data.

• multi_estimate_real() returns a sequence of related uncertain real numbers defined from the mul-
tivariate statistics calculated from a sample of data.

• multi_estimate_complex() returns a sequence of related uncertain complex numbers defined from
the multivariate statistics of a sample of data.

2.2. Evaluating type-A uncertainty 19

https://docs.python.org/3/library/functions.html#complex

GUM Tree Calculator Documentation, Release 1.2.0

• estimate_digitized() returns an uncertain number for the mean of a sample of digitized data.

• mean() returns the mean of a sample of data.

• standard_uncertainty() evaluates the standard uncertainty associated with the sample mean.

• standard_deviation() evaluates the standard deviation of a sample of data.

• variance_covariance_complex() evaluates the variance and covariance associated with the mean
real component and mean imaginary component of the data.

2.2.2 Least squares regression

• line_fit() performs an ordinary least-squares straight line fit to a sample of data.

• line_fit_wls() performs a weighted least-squares straight line fit to a sample of data. The weights are
assumed to be exact.

• line_fit_rwls() performs a weighted least-squares straight line fit to a sample of data. The weights
are only assumed normalise the variability of observations.

• line_fit_wtls() performs a weighted total least-squares straight line fit to a sample of data.

2.2.3 Merging uncertain components

• merge() combines results from a type-A and type-B analysis of the same data.

Note: Many functions in type_a treat data as pure numbers. Sequences of uncertain numbers can be passed to
these functions, but only the uncertain-number values will be used.

merge() is provided so that the results of type-A and type-B analyses on the same data can be combined.

2.2.4 Module contents

estimate(seq, label=None)
Return an uncertain number for the mean of the data in seq

Parameters

• seq – a sequence of data

• label (str) – a label for the returned uncertain number

Return type UncertainReal or UncertainComplex

The elements of seq may be real numbers, complex numbers, or uncertain real or complex numbers. Note
that only the value of uncertain numbers will be used.

The function returns an UncertainReal when the mean of the data is real, and an
UncertainComplex when the mean of the data is complex.

In a type-A evaluation, the sample mean provides an estimate of the quantity of interest. The uncertainty
in this estimate is the standard deviation of the sample mean (or the sample covariance of the mean, in the
complex case).

Examples:

>>> data = range(15)
>>> type_a.estimate(data)
ureal(7.0,1.1547005383792515,14)

>>> data = [(0.91518731126816899+1.5213442955575518j),

(continues on next page)

20 Chapter 2. GTC Modules

https://docs.python.org/3/library/stdtypes.html#str

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

... (0.96572684493613492-0.18547192979059401j),

... (0.23216598132006649+1.6951311687588568j),

... (2.1642786101267397+2.2024333895672563j),

... (1.1812532664590505+0.59062101107787357j),

... (1.2259264339405165+1.1499373179910186j),

... (-0.99422341300318684+1.7359338393131392j),

... (1.2122867690240853+0.32535154897909946j),

... (2.0122536479379196-0.23283009302603963j),

... (1.6770229536619197+0.77195994890476838j)]

>>> type_a.estimate(data)
ucomplex((1.059187840567141+0.9574410497332932j), u=[0.28881665310241805,0.
→˓2655555630050262], r=-4.090655272692547, df=9)

estimate_digitized(seq, delta, label=None, truncate=False)
Return an uncertain number for the mean of digitized data in seq

Parameters

• seq (float, UncertainReal or UncertainComplex) – data

• delta (float) – digitization step size

• label (str) – label for uncertain number returned

• truncate (bool) – if True, truncation, rather than rounding, is assumed

Return type UncertainReal or UncertainComplex

A sequence of data that has been formatted with fixed precision can completely conceal a small amount of
variability in the original values, or merely obscure that variability.

This function recognises the possible interaction between truncation, or rounding, errors and random errors
in the underlying data. The function evaluates the mean of the data and evaluates the uncertainty in this
mean.

Set the argument truncate to True if data have been truncated, instead of rounded.

See reference: R Willink, Metrologia, 44 (2007) 73-81

Examples:

LSD = 0.0001, data varies between -0.0055 and -0.0057
>>> seq = (-0.0056,-0.0055,-0.0056,-0.0056,-0.0056,
... -0.0057,-0.0057,-0.0056,-0.0056,-0.0057,-0.0057)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.005627272727272...,1.9497827808661...e-05,10)

LSD = 0.0001, data varies between -0.0056 and -0.0057
>>> seq = (-0.0056,-0.0056,-0.0056,-0.0056,-0.0056,
... -0.0057,-0.0057,-0.0056,-0.0056,-0.0057,-0.0057)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.005636363636363...,1.52120004824377...e-05,10)

LSD = 0.0001, no spread in data values
>>> seq = (-0.0056,-0.0056,-0.0056,-0.0056,-0.0056,
... -0.0056,-0.0056,-0.0056,-0.0056,-0.0056,-0.0056)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.0056,2.8867513459481...e-05,10)

LSD = 0.0001, no spread in data values, fewer points
>>> seq = (-0.0056,-0.0056,-0.0056)
>>> type_a.estimate_digitized(seq,0.0001)
ureal(-0.0056,3.2914029430219...e-05,2)

2.2. Evaluating type-A uncertainty 21

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

GUM Tree Calculator Documentation, Release 1.2.0

multi_estimate_real(seq_of_seq, labels=None)
Return a sequence of uncertain real numbers

Parameters

• seq_of_seq – a sequence of sequences of data

• labels – a sequence of str labels

Return type seq of UncertainReal

The sequences in seq_of_seq must all be the same length. Each sequence contains a sample of data
associated with a particular quantity. An uncertain number will be created for the quantity from sample
statistics. The covariance between the different quantities will also be evaluated.

A sequence of elementary uncertain numbers is returned. These uncertain numbers are considered to be
related, allowing a degrees-of-freedom calculations to be performed on derived quantities.

Example:

From Appendix H2 in the GUM

>>> V = [5.007,4.994,5.005,4.990,4.999]
>>> I = [19.663E-3,19.639E-3,19.640E-3,19.685E-3,19.678E-3]
>>> phi = [1.0456,1.0438,1.0468,1.0428,1.0433]
>>> v,i,p = type_a.multi_estimate_real((V,I,phi),labels=('V','I','phi'))
>>> v
ureal(4.999000...,0.0032093613071761...,4, label='V')
>>> i
ureal(0.019661,9.471008394041335...e-06,4, label='I')
>>> p
ureal(1.044460...,0.0007520638270785...,4, label='phi')

>>> r = v/i*cos(p)
>>> r
ureal(127.732169928102...,0.071071407396995...,4.0)

multi_estimate_complex(seq_of_seq, labels=None)
Return a sequence of uncertain complex numbers

Parameters

• seq_of_seq – a sequence of sequences of data

• labels – a sequence of str labels

Return type a sequence of UncertainComplex

The sequences in seq_of_seq must all be the same length. Each sequence contains data that is associated
with a particular quantity. An uncertain number for that quantity will be created from sample statistics. The
covariance between the different quantities will also be evaluated.

A sequence of elementary uncertain complex numbers is returned. These uncertain numbers are considered
to be related, allowing a degrees-of-freedom calculations to be performed on derived quantities.

Example:

From Appendix H2 in the GUM

>>> I = [complex(x) for x in (19.663E-3,19.639E-3,19.640E-3,19.685E-3,19.678E-
→˓3)]
>>> V = [complex(x) for x in (5.007,4.994,5.005,4.990,4.999)]
>>> P = [complex(0,p) for p in (1.0456,1.0438,1.0468,1.0428,1.0433)]

>>> v,i,p = type_a.multi_estimate_complex((V,I,P))

>>> get_correlation(v.real,i.real)

(continues on next page)

22 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

-0.355311219817512

>>> z = v/i*exp(p)
>>> z.real
ureal(127.732169928102...,0.071071407396995...,4.0)
>>> get_correlation(z.real,z.imag)
-0.588429784423515...

mean(seq, *args, **kwargs)
Return the arithmetic mean of data in seq

Parameters

• seq – a sequence, ndarray, or iterable, of numbers or uncertain numbers

• args – optional arguments when seq is an ndarray

• kwargs – optional keyword arguments when seq is an ndarray

If seq contains real or uncertain real numbers, a real number is returned.

If seq contains complex or uncertain complex numbers, a complex number is returned.

Example:

>>> data = range(15)
>>> type_a.mean(data)
7.0

standard_deviation(seq, mu=None)
Return the sample standard deviation

Parameters

• seq – sequence of data

• mu – the arithmetic mean of seq

If seq contains real or uncertain real numbers, the sample standard deviation is returned.

If seq contains complex or uncertain complex numbers, the standard deviation in the real and imaginary
components is evaluated, as well as the correlation coefficient between the components. The results are
returned in a pair of objects: a StandardDeviation namedtuple and a correlation coefficient.

Only the values of uncertain numbers are used in calculations.

Examples:

>>> data = range(15)
>>> type_a.standard_deviation(data)
4.47213595499958

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]
>>> sd,r = type_a.standard_deviation(data)
>>> sd
StandardDeviation(real=0.913318449990377, imag=0.8397604244242309)

(continues on next page)

2.2. Evaluating type-A uncertainty 23

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

>>> r
-0.31374045124595246

standard_uncertainty(seq, mu=None)
Return the standard uncertainty associated with the sample mean

Parameters

• seq – sequence of data

• mu – the arithmetic mean of seq

Return type float or StandardUncertainty

If seq contains real or uncertain real numbers, the standard uncertainty of the sample mean is returned.

If seq contains complex or uncertain complex numbers, the standard uncertainties of the real and
imaginary components are evaluated, as well as the sample correlation coefficient are returned in a
StandardUncertainty namedtuple

Only the values of uncertain numbers are used in calculations.

Example:

>>> data = range(15)
>>> type_a.standard_uncertainty(data)
1.1547005383792515

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]
>>> u,r = type_a.standard_uncertainty(data)
>>> u
StandardUncertainty(real=0.28881665310241805, imag=0.2655555630050262)
>>> u.real
0.28881665310241805
>>> r
-0.31374045124595246

variance_covariance_complex(seq, mu=None)
Return the sample variance-covariance matrix

Parameters

• seq – sequence of data

• mu – the arithmetic mean of seq

Returns a 4-element sequence

If mu is None the mean will be evaluated by mean().

seq may contain numbers or uncertain numbers. Only the values of uncertain numbers are used in calcula-
tions.

Variance-covariance matrix elements are returned in a VarianceCovariance namedtuple; they can be
accessed using the attributes .rr, .ri, ,ir and .ii.

Example:

24 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

>>> data = [(0.91518731126816899+1.5213442955575518j),
... (0.96572684493613492-0.18547192979059401j),
... (0.23216598132006649+1.6951311687588568j),
... (2.1642786101267397+2.2024333895672563j),
... (1.1812532664590505+0.59062101107787357j),
... (1.2259264339405165+1.1499373179910186j),
... (-0.99422341300318684+1.7359338393131392j),
... (1.2122867690240853+0.32535154897909946j),
... (2.0122536479379196-0.23283009302603963j),
... (1.6770229536619197+0.77195994890476838j)]
>>> type_a.variance_covariance_complex(data)
VarianceCovariance(rr=0.8341505910928249, ri=-0.24062910264062262, ir=-0.
→˓24062910264062262, ii=0.7051975704291644)

>>> v = type_a.variance_covariance_complex(data)
>>> v[0]
0.8341505910928249
>>> v.rr
0.8341505910928249
>>> v.ii
0.7051975704291644

line_fit(x, y, label=None)
Return a least-squares straight-line fit to the data

New in version 1.2.

Parameters

• x – sequence of stimulus data (independent-variable)

• y – sequence of response data (dependent-variable)

• label – suffix to label the uncertain numbers a and b

Returns an object containing regression results

Return type LineFitOLS

Performs an ordinary least-squares regression of y to x.

Example:

>>> x = [1,2,3,4,5,6,7,8,9]
>>> y = [15.6,17.5,36.6,43.8,58.2,61.6,64.2,70.4,98.8]
>>> result = type_a.line_fit(x,y)
>>> a,b = result.a_b
>>> a
ureal(4.8138888888888...,4.8862063121833...,7)
>>> b
ureal(9.4083333333333...,0.8683016476563...,7)

>>> y_p = a + b*5.5
>>> dof(y_p)
7.0

line_fit_wls(x, y, u_y, label=None)
Return a weighted least-squares straight-line fit

New in version 1.2.

Parameters

• x – sequence of stimulus data (independent-variable)

• y – sequence of response data (dependent-variable)

2.2. Evaluating type-A uncertainty 25

GUM Tree Calculator Documentation, Release 1.2.0

• u_y – sequence of uncertainties in the response data

• label – suffix to label the uncertain numbers a and b

Returns an object containing regression results

Return type LineFitWLS

Example:

>>> x = [1,2,3,4,5,6]
>>> y = [3.2, 4.3, 7.6, 8.6, 11.7, 12.8]
>>> u_y = [0.5,0.5,0.5,1.0,1.0,1.0]

>>> fit = type_a.line_fit_wls(x,y,u_y)
>>> fit.a_b
InterceptSlope(a=ureal(0.8852320675105...,0.5297081435088...,inf),
b=ureal(2.056962025316...,0.177892016741...,inf))

line_fit_rwls(x, y, s_y, label=None)
Return a relative weighted least-squares straight-line fit

New in version 1.2.

The s_y values are used to scale variability in the y data. It is assumed that the standard deviation of
each y value is proportional to the corresponding s_y scale factor. The unknown common factor in the
uncertainties is estimated from the residuals.

Parameters

• x – sequence of stimulus data (independent-variable)

• y – sequence of response data (dependent-variable)

• s_y – sequence of scale factors

• label – suffix to label the uncertain numbers a and b

Returns an object containing regression results

Return type LineFitRWLS

Example:

>>> x = [1,2,3,4,5,6]
>>> y = [3.014,5.225,7.004,9.061,11.201,12.762]
>>> s_y = [0.2,0.2,0.2,0.4,0.4,0.4]
>>> fit = type_a.line_fit_rwls(x,y,s_y)
>>> a, b = fit.a_b
>>>
>>> print(fit)

Relative Weighted Least-Squares Results:

Intercept: 1.14(12)
Slope: 1.973(41)
Correlation: -0.87
Sum of the squared residuals: 1.3395217958...
Number of points: 6

line_fit_wtls(x, y, u_x, u_y, a0_b0=None, r_xy=None, label=None)
Return a total least-squares straight-line fit

New in version 1.2.

Parameters

• x – sequence of independent-variable data

26 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

• y – sequence of dependent-variable data

• u_x – sequence of uncertainties in x

• u_y – sequence of uncertainties in y

• a0_b0 – a pair of initial estimates for the intercept and slope

• r_xy – correlation between x-y pairs

• label – suffix labeling the uncertain numbers a and b

Returns an object containing the fitting results

Return type LineFitWTLS

The optional argument a_b can be used to provide a pair of initial estimates for the intercept and slope.

Based on paper by M Krystek and M Anton, Meas. Sci. Technol. 22 (2011) 035101 (9pp)

Example:

Pearson-York test data see, e.g.,
Lybanon, M. in Am. J. Phys 52 (1) 1984
>>> x=[0.0,0.9,1.8,2.6,3.3,4.4,5.2,6.1,6.5,7.4]
>>> wx=[1000.0,1000.0,500.0,800.0,200.0,80.0,60.0,20.0,1.8,1.0]

>>> y=[5.9,5.4,4.4,4.6,3.5,3.7,2.8,2.8,2.4,1.5]
>>> wy=[1.0,1.8,4.0,8.0,20.0,20.0,70.0,70.0,100.0,500.0]

standard uncertainties required for weighting
>>> ux=[1./math.sqrt(wx_i) for wx_i in wx]
>>> uy=[1./math.sqrt(wy_i) for wy_i in wy]

>>> result = ta.line_fit_wtls(x,y,ux,uy)
>>> intercept, slope = result.a_b
>>> intercept
ureal(5.47991018...,0.29193349...,8)
>>> slope
ureal(-0.48053339...,0.057616740...,8)

class LineFitOLS(a, b, ssr, N)
Class to hold the results of an ordinary least-squares regression to data.

It can also be used to apply the results of a regression analysis.

New in version 1.2.

N
The number of points in the sample

a_b
Return the intercept a and slope b as a tuple of uncertain numbers

intercept
Return the intercept as an uncertain number.

slope
Return the slope as an uncertain number.

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

x_from_y(yseq, x_label=None, y_label=None)
Estimate the stimulus x corresponding to the responses in yseq

2.2. Evaluating type-A uncertainty 27

GUM Tree Calculator Documentation, Release 1.2.0

Parameters

• yseq – a sequence of y observations

• x_label – a label for the return uncertain number x

• y_label – a label for the estimate of y based on yseq

..note:: When x_label is defined, the uncertain number returned will be declared an intermediate
result (using result())

Example

>>> x_data = [0.1, 0.1, 0.1, 0.3, 0.3, 0.3, 0.5, 0.5, 0.5,
... 0.7, 0.7, 0.7, 0.9, 0.9, 0.9]
>>> y_data = [0.028, 0.029, 0.029, 0.084, 0.083, 0.081, 0.135, 0.131,
... 0.133, 0.180, 0.181, 0.183, 0.215, 0.230, 0.216]

>>> fit = type_a.line_fit(x_data,y_data)

>>> x0 = fit.x_from_y([0.0712, 0.0716])
>>> x0
ureal(0.2601659751037...,0.01784461112558...,13.0)

y_from_x(x, s_label=None, y_label=None)
Return an uncertain number y that predicts the response to x

Parameters

• x – a real number, or an uncertain real number

• s_label – a label for an elementary uncertain number associated with observation
variability

• y_label – a label for the return uncertain number y

This is a prediction of a single future response y to a stimulus x

The variability in observations is based on residuals obtained during regression.

An uncertain real number can be used for x, in which case the associated uncertainty will also be
propagated into y.

..note:: When y_label is defined, the uncertain number returned will be declared an intermediate
result (using result())

class LineFitRWLS(a, b, ssr, N)
Class to hold the results of a relative weighted least-squares regression. The weights provided normalise the
variability of observations.

New in version 1.2.

N
The number of points in the sample

a_b
Return the intercept a and slope b as a tuple of uncertain numbers

intercept
Return the intercept as an uncertain number.

slope
Return the slope as an uncertain number.

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

28 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

If weights are used during the fit, the squares of weighted deviations are summed.

x_from_y(yseq, s_y, x_label=None, y_label=None)
Estimate the stimulus x corresponding to the responses in yseq

Parameters

• yseq – a sequence of further observations of y

• s_y – a scale factor for the uncertainty of the yseq

• x_label – a label for the return uncertain number x

• y_label – a label for the estimate of y based on yseq

..note:: When x_label is defined, the uncertain number returned will be declared an intermediate
result (using result())

y_from_x(x, s_y, s_label=None, y_label=None)
Return an uncertain number y that predicts the response to x

Parameters

• x – a real number, or an uncertain real number

• s_y – a scale factor for the response uncertainty

• s_label – a label for an elementary uncertain number associated with observation
variability

• y_label – a label for the return uncertain number y

Returns a single future response y predicted for a stimulus x.

Because there is different variability in the response to different stimuli, the scale factor s_y is re-
quired. It is assumed that the standard deviation in the y value is proportional to s_y.

An uncertain real number can be used for x, in which case the associated uncertainty is also propagated
into y.

..note:: When y_label is defined, the uncertain number returned will be declared an intermediate
result (using result())

class LineFitWLS(a, b, ssr, N)
Class to hold the results of a weighted least-squares regression. The weight factors provided are assumed to
correspond exactly to the variability of observations.

New in version 1.2.

N
The number of points in the sample

a_b
Return the intercept a and slope b as a tuple of uncertain numbers

intercept
Return the intercept as an uncertain number.

slope
Return the slope as an uncertain number.

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

x_from_y(yseq, u_yseq, x_label=None, y_label=None)
Estimate the stimulus x corresponding to the responses in yseq

2.2. Evaluating type-A uncertainty 29

GUM Tree Calculator Documentation, Release 1.2.0

Parameters

• yseq – a sequence of further observations of y

• u_yseq – the standard uncertainty of the yseq data

• x_label – a label for the return uncertain number x

• y_label – a label for the estimate of y based on yseq

The variations in yseq values are assumed to result from independent random effects.

..note:: When x_label is defined, the uncertain number returned will be declared an intermediate
result (using result())

y_from_x(x, s_y, s_label=None, y_label=None)
Return an uncertain number y that predicts the response to x

Parameters

• x – a real number, or an uncertain real number

• s_y – response variability uncertainty

• s_label – a label for an elementary uncertain number associated with response
variability

• y_label – a label for the return uncertain number y

Returns a single future response y predicted for a stimulus x.

The standard uncertainty s_y is used to create an additive component of uncertainty associated with
variability in the y value.

An uncertain real number can be used for x, in which case the associated uncertainty is also propagated
into y.

..note:: When y_label is defined, the uncertain number returned will be declared an intermediate
result (using result())

class LineFitWTLS(a, b, ssr, N)
This object holds results from a TLS linear regression to data.

New in version 1.2.

N
The number of points in the sample

a_b
Return the intercept a and slope b as a tuple of uncertain numbers

intercept
Return the intercept as an uncertain number.

slope
Return the slope as an uncertain number.

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

merge(a, b)
Combine the uncertainty components of a and b

Parameters

• a – an uncertain real or complex number

• b – an uncertain real or complex number

30 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

Returns an uncertain number that combines the uncertainty components of a and b

The values of a and b must be equal and the components of uncertainty associated with a and b must be
distinct, otherwise a RuntimeError will be raised.

Use this function to combine results from type-A and type-B uncertainty analyses performed on a common
sequence of data.

Note: Some judgement will be required as to when it is appropriate to merge uncertainty components.

There is a risk of ‘double-counting’ uncertainty if type-B components are contributing to the variability
observed in the data, and therefore assessed in a type-A analysis.

Example:

From Appendix H3 in the GUM

Thermometer readings (degrees C)
t = (21.521,22.012,22.512,23.003,23.507,

23.999,24.513,25.002,25.503,26.010,26.511)

Observed differences with calibration standard (degrees C)
b = (-0.171,-0.169,-0.166,-0.159,-0.164,

-0.165,-0.156,-0.157,-0.159,-0.161,-0.160)

Arbitrary offset temperature (degrees C)
t_0 = 20.0

Calculate the temperature relative to t_0
t_rel = [t_k - t_0 for t_k in t]

A common systematic error in all differences
e_sys = ureal(0,0.01)

b_type_b = [b_k + e_sys for b_k in b]

Type-A least-squares regression
y_1_a, y_2_a = type_a.line_fit(t_rel,b_type_b).a_b

Type-B least-squares regression
y_1_b, y_2_b = type_b.line_fit(t_rel,b_type_b)

`y_1` and `y_2` have uncertainty components
related to the type-A analysis as well as the
type-B systematic error
y_1 = type_a.merge(y_1_a,y_1_b)
y_2 = type_a.merge(y_2_a,y_2_b)

2.3 Evaluating type-B uncertainty

The shorter name tb has been defined as an alias for type_b, to resolve the names of objects in this module.

2.3.1 Least-squares regression

line_fit() implements an ordinary least-squares straight-line regression calculation that accepts uncertain
real numbers for the independent and dependent variables.

line_fit_wls() implements a weighted least-squares straight-line regression calculation. It accepts uncertain
real numbers for the independent and dependent variables. It is also possible to specify weights for the regression.

2.3. Evaluating type-B uncertainty 31

https://docs.python.org/3/library/exceptions.html#RuntimeError

GUM Tree Calculator Documentation, Release 1.2.0

line_fit_wtls() implements a total least-squares algorithm for a straight-line fitting that can perform a
weighted least-squares regression when both y and x data are uncertain real numbers, it also handles correlation
between (x,y) data pairs.

2.3.2 Probability distributions: real-valued problems

Functions that convert the half-width of a one-dimensional distribution to a standard uncertainty:

• uniform()

• triangular()

• u_shaped()

• arcsine()

2.3.3 Probability distributions: complex-valued problems

Functions that convert information about two-dimensional distributions into standard uncertainties:

• uniform_ring()

• uniform_disk()

• unknown_phase_product()

2.3.4 A table of distributions

The mapping distribution is provided so that the functions above can be selected by name. For
example,

>>> a = 1.5
>>> ureal(1, type_b.distribution['gaussian'](a))
ureal(1.0,1.5,inf)
>>> ureal(1, type_b.distribution['uniform'](a))
ureal(1.0,0.8660254037844387,inf)
>>> ureal(1, type_b.distribution['arcsine'](a))
ureal(1.0,1.0606601717798212,inf)

Keys to distribution are (case-sensitive):

• gaussian

• uniform

• triangular

• arcsine

• u_shaped

• uniform_ring

• uniform_disk

2.3.5 Module contents

line_fit(x, y)
Least-squares fit intercept and slope

New in version 1.2.

Parameters

32 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

• x – sequence of independent variable data

• y – sequence of dependent variable data

Return type a LineFitOLS

y must be a sequence of uncertain real numbers.

Performs an ordinary least-squares regression.

Note: Uncertainty in the parameter estimates is found by propagation through the regression formulae.
This does not take residuals into account.

The function type_a.line_fit() performs a regression analysis that evaluates uncertainty in the pa-
rameter estimates using the residuals.

If appropriate, the results from both type-A and type-B analyses can be merged (see type_a.merge()).

Example:

>>> a0 =10
>>> b0 = -3
>>> u0 = .2

>>> x = [float(x_i) for x_i in xrange(10)]
>>> y = [ureal(b0*x_i + a0,u0) for x_i in x]

>>> a,b = tb.line_fit(x,y).a_b
>>> a
ureal(10.0,0.1175507627290...,inf)
>>> b
ureal(-3.0,0.02201927530252...,inf)

line_fit_wls(x, y, u_y=None)
-> Weighted least-squares linear regression

New in version 1.2.

Parameters

• x – sequence of independent variable data

• y – sequence of dependent variable data

• u_y – sequence of uncertainties in y

Return type LineFitWLS

y must be a sequence of uncertain real numbers.

Performs a weighted least-squares regression.

Weights are calculated from the uncertainty of the y elements unless the sequence u_y is provided.

Note: The uncertainty in the parameter estimates is found by propagation of uncertainty through the
regression formulae. This does not take account of the residuals.

The function type_a.line_fit_wls() can be used to carry out a regression analysis that obtains
uncertainty in the parameter estimates due to the residuals.

If necessary, the results of both type-A and type-B analyses can be merged (see type_a.merge()).

Example:

2.3. Evaluating type-B uncertainty 33

GUM Tree Calculator Documentation, Release 1.2.0

>>> x = [1,2,3,4,5,6]
>>> y = [3.2, 4.3, 7.6, 8.6, 11.7, 12.8]
>>> u_y = [0.5,0.5,0.5,1.0,1.0,1.0]
>>> y = [ureal(y_i,u_y_i) for y_i, u_y_i in zip(y,u_y)]

>>> fit = type_b.line_fit_wls(x,y)
>>> a, b = fit.a_b
>>> a
ureal(0.8852320675105...,0.5297081435088...,inf)
>>> b
ureal(2.0569620253164...,0.1778920167412...,inf)

line_fit_wtls(x, y, u_x=None, u_y=None, a_b=None, r_xy=None)
Perform straight-line regression with uncertainty in x and y

New in version 1.2.

Parameters

• x – list of uncertain real numbers for the independent variable

• y – list of uncertain real numbers for the dependent variable

• u_x – a sequence of uncertainties for the x data

• u_y – a sequence of uncertainties for the y data

• a_b – a pair of initial estimates for the intercept and slope

• r_xy – correlation between x-y pairs [default: 0]

Returns a LineFitWTLS object

The elements of x and y must be uncertain numbers with non-zero uncertainties. If specified, the optional
arguments u_x and u_y will be used uncertainties to weight the data for the regression, otherwise the
uncertainties of the uncertain numbers in the sequences are used.

The optional argument a_b can be used to provide a pair of initial estimates for the intercept and slope.
Otherwise, initial estimates will be obtained by calling line_fit_wls.

Implements a Weighted Total Least Squares algorithm that allows for correlation between x-y pairs. See
reference:

M Krystek and M Anton, Meas. Sci. Technol. 22 (2011) 035101 (9pp)

Example:

Pearson-York test data
see, e.g., Lybanon, M. in Am. J. Phys 52 (1), January 1984
>>> xin=[0.0,0.9,1.8,2.6,3.3,4.4,5.2,6.1,6.5,7.4]
>>> wx=[1000.0,1000.0,500.0,800.0,200.0,80.0,60.0,20.0,1.8,1.0]
>>> yin=[5.9,5.4,4.4,4.6,3.5,3.7,2.8,2.8,2.4,1.5]
>>> wy=[1.0,1.8,4.0,8.0,20.0,20.0,70.0,70.0,100.0,500.0]

Convert weights to standard uncertainties
>>> uxin=[1./math.sqrt(wx_i) for wx_i in wx]
>>> uyin=[1./math.sqrt(wy_i) for wy_i in wy]

Define uncertain numbers
>>> x = [ureal(xin_i,uxin_i) for xin_i,uxin_i in zip(xin,uxin)]
>>> y = [ureal(yin_i,uyin_i) for yin_i,uyin_i in zip(yin,uyin)]

TLS returns uncertain numbers
>>> a,b = type_b.line_fit_wtls(x,y).a_b
>>> a
ureal(5.47991018...,0.29193349...,inf)

(continues on next page)

34 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

>>> b
ureal(-0.48053339...,0.057616740...,inf)

class LineFitOLS(a, b, ssr, N)
Class to hold results from an ordinary linear regression to data.

New in version 1.2.

N
The number of points in the sample

a_b
Return the intercept a and slope b as a tuple of uncertain numbers

intercept
Return the intercept as an uncertain number.

slope
Return the slope as an uncertain number.

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

x_from_y(yseq, x_label=None)
Estimate the stimulus x corresponding to the responses in yseq

Parameters

• yseq – a sequence of further observations of y

• x_label – a label for the return uncertain number x

The items in yseq must be uncertain real numbers.

..note:: When x_label is defined, the uncertain number returned will be declared an intermediate
result (using result())

y_from_x(x, y_label=None)
Return an uncertain number y that predicts the response to x

Parameters

• x – an uncertain real number

• y_label – a label for the return uncertain number y

This is a prediction of a single future response y to a stimulus x

..note:: When y_label is defined, the uncertain number returned will be declared an intermediate
result (using result())

class LineFitWLS(a, b, ssr, N)
This object holds results from a weighted LS linear regression to data.

New in version 1.2.

N
The number of points in the sample

a_b
Return the intercept a and slope b as a tuple of uncertain numbers

intercept
Return the intercept as an uncertain number.

2.3. Evaluating type-B uncertainty 35

GUM Tree Calculator Documentation, Release 1.2.0

slope
Return the slope as an uncertain number.

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

x_from_y(yseq, x_label=None)
Estimate the stimulus x corresponding to the responses in yseq

Parameters

• yseq – a sequence of further observations of y

• x_label – a label for the return uncertain number x

The items in yseq must be uncertain real numbers.

..note:: When x_label is defined, the uncertain number returned will be declared an intermediate
result (using result())

y_from_x(x, y_label=None)
Return an uncertain number y that predicts the response to x

Parameters

• x – an uncertain real number

• y_label – a label for the return uncertain number y

This is a prediction of a single future response y to a stimulus x

..note:: When y_label is defined, the uncertain number returned will be declared an intermediate
result (using result())

class LineFitWTLS(a, b, ssr, N)
This object holds results from a TLS linear regression to data.

New in version 1.2.

N
The number of points in the sample

a_b
Return the intercept a and slope b as a tuple of uncertain numbers

intercept
Return the intercept as an uncertain number.

slope
Return the slope as an uncertain number.

ssr
Sum of the squared residuals

The sum of the squared deviations between values predicted by the model and the actual data.

If weights are used during the fit, the squares of weighted deviations are summed.

uniform(a)
Return the standard uncertainty for a uniform distribution.

Parameters a (float) – the half-width

Example:

>>> x = ureal(1,type_b.uniform(1))
>>> x
ureal(1.0,0.5773502691896258,inf)

36 Chapter 2. GTC Modules

https://docs.python.org/3/library/functions.html#float

GUM Tree Calculator Documentation, Release 1.2.0

triangular(a)
Return the standard uncertainty for a triangular distribution.

Parameters a (float) – the half-width

Example:

>>> x = ureal(1,type_b.triangular(1))
>>> x
ureal(1.0,0.4082482904638631,inf)

u_shaped(a)
Return the standard uncertainty for an arcsine distribution.

Parameters a (float) – the half-width

Example:

>>> x = ureal(1,type_b.arcsine(1))
>>> x
ureal(1.0,0.7071067811865475,inf)

arcsine(a)
Return the standard uncertainty for an arcsine distribution.

Parameters a (float) – the half-width

Example:

>>> x = ureal(1,type_b.arcsine(1))
>>> x
ureal(1.0,0.7071067811865475,inf)

uniform_ring(a)
Return the standard uncertainty for a uniform ring

Parameters a (float) – the radius

Convert the radius of a uniform ring distribution a to a standard uncertainty

See reference: B D Hall, Metrologia 48 (2011) 324-332

Example:

>>> z = ucomplex(0, type_b.uniform_ring(1))
>>> z
ucomplex((0+0j), u=[0.7071067811865475,0.7071067811865475], r=0.0, df=inf)

uniform_disk(a)
Return the standard uncertainty for a uniform disk

Parameters a (float) – the radius

Convert the radius of a uniform disk distribution a to a standard uncertainty.

See reference: B D Hall, Metrologia 48 (2011) 324-332

Example:

>>> z = ucomplex(0, type_b.uniform_disk(1))
>>> z
ucomplex((0+0j), u=[0.5,0.5], r=0.0, df=inf)

unknown_phase_product(u1, u2)
Return the standard uncertainty for a product when phases are unknown

Parameters

2.3. Evaluating type-B uncertainty 37

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

GUM Tree Calculator Documentation, Release 1.2.0

• u1 – the standard uncertainty of the first multiplicand

• u2 – the standard uncertainty of the second multiplicand

Obtains the standard uncertainty associated with a complex product when estimates have unknown phase.

The arguments u1 and u2 are the standard uncertainties associated with each multiplicand.

See reference: B D Hall, Metrologia 48 (2011) 324-332

Example:

X = Gamma1 * Gamma2
>>> X = ucomplex(0, type_b.unknown_phase_product(.1,.1))
>>> X
ucomplex((0+0j), u=[0.014142135623730954,0.014142135623730954], r=0.0, df=inf)

distribution
Maps distribution[name] -> function for standard uncertainty

Example::

>>> type_b.distribution['arcsine'](1.5)
1.06066017177982...

2.4 function module

2.4.1 Utility functions

Functions complex_to_seq() and seq_to_complex() are useful to convert between the matrix represen-
tation of complex numbers and Python complex.

The function mean() evaluates the mean of a sequence.

2.4.2 Module contents

complex_to_seq(z)
Transform a complex number into a 4-element sequence

Parameters z – a number

If z = x + yj, then an array of the form [[x,-y],[y,x]] can be used to represent z in matrix
computations.

Examples::

>>> import numpy
>>> z = 1 + 2j
>>> function.complex_to_seq(z)
(1.0, -2.0, 2.0, 1.0)

>>> m = numpy.array(function.complex_to_seq(z))
>>> m.shape = (2,2)
>>> print(m)
[[1. -2.]
[2. 1.]]

seq_to_complex(seq)
Transform a 4-element sequence into a complex number

Parameters seq – a 4-element sequence

38 Chapter 2. GTC Modules

https://docs.python.org/3/library/functions.html#complex

GUM Tree Calculator Documentation, Release 1.2.0

Raises RuntimeError – if seq is ill-conditioned

Examples:

>>> import numpy
>>> seq = (1,-2,2,1)
>>> z = function.seq_to_complex(seq)
>>> z
(1+2j)
>>> a = numpy.array((1,-2,2,1))
>>> a.shape = 2,2
>>> a
array([[1, -2],

[2, 1]])
>>> z = function.seq_to_complex(a)
>>> z
(1+2j)

mean(seq, *args, **kwargs)
Return the arithmetic mean of the elements in seq

Parameters

• seq – a sequence, ndarray, or iterable, of numbers or uncertain numbers

• args – optional arguments when seq is an ndarray

• kwargs – optional keyword arguments when seq is an ndarray

If the elements of seq are uncertain numbers, an uncertain number is returned.

Example

>>> seq = [ureal(1,1), ureal(2,1), ureal(3,1)]
>>> function.mean(seq)
ureal(2.0,0.5773502691896257,inf)

2.5 Reporting functions

This module provides functions to facilitate the reporting of information about calculations.

The shorter name rp has been defined as an alias for reporting, to resolve the names of objects defined in this
module.

2.5.1 Reporting functions

• The function budget() produces an uncertainty budget.

• The function k_factor() returns the coverage factor used for real-valued problems (based on the
Student-t distribution).

• The function k_to_dof() returns the degrees of freedom corresponding to a given coverage factor and
coverage probability.

• The function k2_factor_sq() returns coverage factor squared for the complex-valued problem.

• The function k2_to_dof() returns the degrees of freedom corresponding to a given coverage factor and
coverage probability in complex-valued problems.

• Functions u_bar() and v_bar() return summary values for matrix results associated with 2-D uncer-
tainty.

2.5. Reporting functions 39

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

GUM Tree Calculator Documentation, Release 1.2.0

2.5.2 Uncertainty functions

• The function u_component() returns the signed component of uncertainty in one uncertain number due
to uncertainty in another.

• The function sensitivity() returns the partial derivative of one uncertain number with respect to
another. This is ofetn called the sensitivity coefficient.

2.5.3 Type functions

• The function is_ureal() can be used to identify uncertain real numbers.

• The function is_ucomplex() can be used to identify uncertain complex numbers.

2.5.4 Module contents

budget(y, influences=None, key=’u’, reverse=True, trim=0.01, max_number=None)
Return a sequence of label-component of uncertainty pairs

Parameters

• y (UncertainReal or UncertainComplex) – an uncertain number

• influences – a sequence of uncertain numbers

• key – the list sorting key

• reverse (bool) – determines sorting order (forward or reverse)

• trim – remove components of uncertainty that are less than trim times the largest
component

• max_number – return no more than max_number components

A sequence of Influence namedtuples is returned, each with the attributes label and u for a component
of uncertainty (see component()).

The argument influences can be used to select the influences are that reported.

The argument key can be used to order the sequence by the component of uncertainty or the label (u or
label).

The argument reverse controls the sense of ordering.

The argument trim can be used to set a minimum relative magnitude of components returned. Set trim=0
for a complete list.

The argument max_number can be used to restrict the number of components returned.

Example:

>>> x1 = ureal(1,1,label='x1')
>>> x2 = ureal(2,0.5,label='x2')
>>> x3 = ureal(3,0.1,label='x3')
>>> y = (x1 - x2) / x3
>>> for l,u in reporting.budget(y):
... print("{0}: {1:G}".format(l,u))
...
x1: 0.333333
x2: 0.166667
x3: 0.0111111

>>> for l,u in reporting.budget(y,reverse=False):
... print("{0}: {1:G}".format(l,u))
...

(continues on next page)

40 Chapter 2. GTC Modules

https://docs.python.org/3/library/functions.html#bool

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

x3: 0.0111111
x2: 0.166667
x1: 0.333333

k_factor(df=inf, p=95)
Return the a coverage factor for an uncertainty interval

Parameters

• df (float) – the degrees-of-freedom (>1)

• p (int or float) – the coverage probability (%)

Evaluates the coverage factor for an uncertainty interval with coverage probability p and degrees-of-freedom
df based on the Student t-distribution.

Example:

>>> reporting.k_factor(3)
3.182446305284263

k_to_dof(k, p=95)
Return the dof corresponding to a univariate coverage factor k

Parameters

• k (float) – coverage factor (>0)

• p (int or float) – coverage probability (%)

Evaluates the degrees-of-freedom given a coverage factor for an uncertainty interval with coverage proba-
bility p based on the Student t-distribution.

Example:

>>> reporting.k_to_dof(2.0,95)
60.43756442698591

k2_factor_sq(df=inf, p=95)
Return a squared coverage factor for an elliptical uncertainty region

Parameters

• df (float) – the degrees-of-freedom (>=2)

• p (int or float) – the coverage probability (%)

Evaluates the square of the coverage factor for an elliptical uncertainty region with coverage probability p
and df degrees of freedom based on the F-distribution.

Example:

>>> reporting.k2_factor_sq(3)
56.99999999999994

k2_to_dof(k2, p=95)
Return the dof corresponding to a bivariate coverage factor k2

Parameters

• k2 (float) – coverage factor (>0)

• p (int or float) – coverage probability (%)

Evaluates a number of degrees-of-freedom given a coverage factor for an elliptical uncertainty region with
coverage probability p based on the F-distribution.

Example:

2.5. Reporting functions 41

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

GUM Tree Calculator Documentation, Release 1.2.0

>>> reporting.k2_to_dof(2.6,95)
34.35788424389927

u_component(y, x)
Return the component of uncertainty in y due to x

Parameters

• y – UncertainReal or UncertainComplex or UncertainArray

• x – UncertainReal or UncertainComplex or UncertainArray

If x and y are uncertain real numbers, return a float.

If y or x is an uncertain complex number, return a 4-element sequence of float, containing the components
of uncertainty.

When x and y are arrays, an uncertain_array.UncertainArray is returned containing the results
of applying this function to the array elements.

Otherwise, return 0.

Example:

>>> x = ureal(3,1)
>>> y = 3 * x
>>> reporting.u_component(y,x)
3.0

>>> q = ucomplex(2,1)
>>> z = magnitude(q) # uncertain real numbers
>>> reporting.u_component(z,q)
ComponentOfUncertainty(rr=1.0, ri=0.0, ir=0.0, ii=0.0)

>>> r = ucomplex(3,1)
>>> z = q * r
>>> reporting.u_component(z,q)
ComponentOfUncertainty(rr=3.0, ri=-0.0, ir=0.0, ii=3.0)

sensitivity(y, x)
Return the first partial derivative of y with respect to x

Parameters

• y – UncertainReal or UncertainComplex or UncertainArray

• x – UncertainReal or UncertainComplex or UncertainArray

If x and y are uncertain real numbers, return a float.

If y or x is an uncertain complex number, return a 4-element sequence of float, representing the Jacobian
matrix.

When x and y are arrays, an UncertainArray is returned containing the results of applying this function
to the array elements.

Otherwise, return 0.

New in version 1.1.

Example:

>>> x = ureal(3,1)
>>> y = 3 * x
>>> reporting.sensitivity(y,x)
3.0

(continues on next page)

42 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

>>> q = ucomplex(2,1)
>>> z = magnitude(q) # uncertain real numbers
>>> reporting.sensitivity(z,q)
JacobianMatrix(rr=1.0, ri=0.0, ir=0.0, ii=0.0)

>>> r = ucomplex(3,1)
>>> z = q * r
>>> reporting.sensitivity(z,q)
JacobianMatrix(rr=3.0, ri=-0.0, ir=0.0, ii=3.0)

is_ureal(x)
Return True if x is an uncertain real number

Example:

>>> x = ureal(1,1)
>>> reporting.is_ureal(x)
True

is_ucomplex(z)
Return True if z is an uncertain complex number

Example:

>>> z = ucomplex(1+2j,(0.1,0.2))
>>> reporting.is_ucomplex(z)
True

v_bar(cv)
Return the trace of cv divided by 2

Parameters cv (4-element sequence of float) – a variance-covariance matrix

Returns float

Example:

>>> x1 = 1-.5j
>>> x2 = .2+7.1j
>>> z1 = ucomplex(x1,(1,.2))
>>> z2 = ucomplex(x2,(.2,1))
>>> y = z1 * z2
>>> y.v
VarianceCovariance(rr=2.3464, ri=1.8432, ir=1.8432, ii=51.4216)
>>> reporting.v_bar(y.v)
26.884

u_bar(ucpt)
Return the magnitude of a component of uncertainty

Parameters ucpt (float or 4-element sequence of float) – a component of
uncertainty

If ucpt is a sequence, return the root-sum-square of the elements divided by
√

2

If ucpt is a number, return the absolute value.

Example:

>>> x1 = 1-.5j
>>> x2 = .2+7.1j
>>> z1 = ucomplex(x1,1)
>>> z2 = ucomplex(x2,1)
>>> y = z1 * z2

(continues on next page)

2.5. Reporting functions 43

https://docs.python.org/3/library/functions.html#float

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

>>> dy_dz1 = reporting.u_component(y,z1)
>>> dy_dz1
ComponentOfUncertainty(rr=0.2, ri=-7.1, ir=7.1, ii=0.2)
>>> reporting.u_bar(dy_dz1)
7.102816342831905

2.6 The persistence module

2.6.1 Class

An Archive object can be used to marshal a set of uncertain numbers for storage, or restore a set of
uncertain numbers from storage.

Python pickle is used for the storage mechanism.

2.6.2 Functions

An archive can be pickled and stored in a file, or a string.

Functions for storing and retrieving a pickled archive file are

• load()

• dump()

Functions for storing and retrieving a pickled archive string are

• dumps()

• loads()

2.6.3 Module contents

class Archive
An Archive object can be used to marshal a set of uncertain numbers for storage, or restore a set of
uncertain numbers from storage.

add(**kwargs)
Add entries name = uncertain-number to the archive

Example:

>>> a = Archive()
>>> x = ureal(1,1)
>>> y = ureal(2,1)
>>> a.add(x=x,fred=y)

extract(*args)
Extract one or more uncertain numbers

Parameters args – names of archived uncertain numbers

If just one name is given, a single uncertain number is returned, otherwise a sequence of uncertain
numbers is returned.

Example:

>>> x, fred = a.extract('x','fred')
>>> harry = a.extract('harry')

44 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

items()
Return a list of name -to- uncertain-number pairs

iteritems()
Return an iterator of name -to- uncertain-number pairs

iterkeys()
Return an iterator for names

itervalues()
Return an iterator for uncertain numbers

keys()
Return a list of names

values()
Return a list of uncertain numbers

load(file)
Load an archive from a file

Parameters file – a file object opened in binary read mode (with ‘rb’)

Several archives can be extracted from one file by repeatedly calling this function.

dump(file, ar)
Save an archive in a file

Parameters

• file – a file object opened in binary write mode (with ‘wb’)

• ar – an Archive object

Several archives can be saved in a file by repeated use of this function.

dumps(ar, protocol=4)
Return a string representation of the archive

Parameters

• ar – an Archive object

• protocol – encoding type

Possible values for protocol are described in the Python documentation for the ‘pickle’ module.

protocol=0 creates an ASCII string, but note that many (special) linefeed characters are embedded.

loads(s)
Return an archive object restored from a string representation

Parameters s – a string created by dumps()

2.7 named-tuples

A number of namedtuple class are used in GTC to return the results of calculations.

class VarianceAndDof(cv, df)
namedtuple: Values of the variance and degrees of freedom.

cv
Variance.

df
float: Degrees of freedom.

class VarianceCovariance(rr, ri, ir, ii)
namedtuple: Values of variance-covariance for a complex quantity

2.7. named-tuples 45

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.html#collections.namedtuple

GUM Tree Calculator Documentation, Release 1.2.0

rr
float: variance in the real component

ri
float: covariance between th real and imaginary components

ir
float: covariance between th real and imaginary components

ii
float: variance in the imaginary component

class StandardUncertainty(real, imag)
namedtuple: Standard uncertainty values of a complex quantity

real
float: standard uncertainty in the real component

imag
float: standard uncertainty in the imaginary component

class StandardDeviation(real, imag)
namedtuple: Standard deviation values of a complex quantity

real
float: standard deviation in the real component

imag
float: standard deviation in the imaginary component

class ComponentOfUncertainty(rr, ri, ir, ii)
namedtuple: Component of uncertainty values for a complex quantity

rr
float: real component with respect to real component

ri
float: real component with respect to imaginary component

ir
float: imaginary component with respect to real component

ii
float: imaginary component with respect to imaginary component

class Influence(label, u)
namedtuple: label and value of a component of uncertainty

label
str: influence quantity label

u
float: component of uncertainty due to influence quantity

class CovarianceMatrix(rr, ri, ir, ii)
namedtuple: Values of covariance for a pair of quantities x and y

rr
float: covariance between x.real and y.real

ri
float: covariance between x.real and y.imag

ir
float: covariance between x.imag and y.real

ii
float: covariance between x.imag and y.imag

46 Chapter 2. GTC Modules

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

GUM Tree Calculator Documentation, Release 1.2.0

class CorrelationMatrix(rr, ri, ir, ii)
namedtuple: Correlation coefficients for a pair of quantities x and y

rr
float: correlation between x.real and y.real

ri
float: correlation between x.real and y.imag

ir
float: correlation between x.imag and y.real

ii
float: correlation between x.imag and y.imag

class InterceptSlope(a, b)
namedtuple: Values for intercept a and slope b

a
UncertainReal: intercept

b
UncertainReal: slope

2.8 Linear Algebra

This module provides support for calculations using arrays containing uncertain numbers.

The shorter name la has been defined as an alias for linear_algebra, to resolve the names of objects defined
in this module.

2.8.1 Arrays of Uncertain Numbers

UncertainArray is a convenient container of uncertain numbers. The preferred way to create arrays is the
function uarray().

An array can contain a mixture of UncertainReal, UncertainComplex and Python numbers (int,
float and complex).

The usual mathematical operations can be applied to an array. For instance, if A and B have the same size, they can
be added A + B, subtracted A - B, etc; or a function like sqrt(A) can be applied. This vectorisation provides
a succinct notation for repetitive operations but it does not offer a significant speed advantage over Python iteration.

Note: To evaluate the product of two-dimensional arrays representing matrices, the function matmul() should
be used (for Python 3.5 and above the built-in binary operator @ is an alternative). For example:

>>> a = la.uarray([[1.1,.5],[ureal(3,1),.5]])
>>> b = la.uarray([[5.2,ucomplex(4,1)],[.1,.1+3j]])
>>> la.matmul(a,b)
uarray([[5.7700000000000005,

ucomplex((4.45+1.5j), u=[1.1,1.1], r=0.0, df=inf)],
[ureal(15.650000000000002,5.2,inf),
ucomplex((12.05+1.5j), u=[5.0,3.0], r=0.0, df=inf)]])

Classes

• UncertainArray

2.8. Linear Algebra 47

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex

GUM Tree Calculator Documentation, Release 1.2.0

Arithmetic operations

Arithmetic operations are defined for arrays (unary + and -, and binary +, - and *). The multipli-
cation operator * is implemented element-wise. For two-dimensional arrays, matrix multiplication is
performed by matmul() (since Python 3.5, the @ operator can be used). Also, dot() evaluates the
array dot product, which for two-dimensional arrays is equivalent to matrix multiplication.

When one argument is a scalar, it is applied to each element of the array in turn.

Mathematical operations

The standard mathematical operations defined in core can be applied directly to an
UncertainArray. An UncertainArray is returned, containing the result of the function ap-
plied to each element.

Functions

The functions inv(), transpose(), solve() and det() implement the usual linear algebra
operations.

The functions identity(), empty(), zeros() full() and ones() create simple arrays.

Reporting functions

Reporting functions u_component() and sensitivity() can be applied directly to a pair of
arrays. An UncertainArray containing the result of applying the function to pairs of elements
will be returned.

The core GTC function result() can be used to define elements of an array as intermediate uncer-
tain numbers.

Array broadcasting

When binary arithmetic operations are applied to arrays, the shape of the array may be changed for
the purposes of the calculation. The rules are as follows:

• If arrays do not have the same number of dimensions, then dimensions of size 1 are prepended
to the smaller array’s shape

Following this, the size of array dimensions are compared and checked for compatibility. Array
dimensions are compatible when

• dimension sizes are equal, or

• one of the dimension sizes is 1

Finally, if either of the compared dimension sizes is 1, the size of the larger dimension is used. For
example:

>>> x = la.uarray([1,2])
>>> y = la.uarray([[1],[2]])
>>> print(x.shape,y.shape)
(2,) (2, 1)
>>> x + y
uarray([[2, 3],

[3, 4]])

48 Chapter 2. GTC Modules

GUM Tree Calculator Documentation, Release 1.2.0

Module contents

uarray(array, label=None, names=None)
Create an array of uncertain numbers.

For an overview on how to use an UncertainArray see Examples using UncertainArray.

New in version 1.1.

Attention: Requires numpy ≥ v1.13.0 to be installed.

Parameters

• array – An array-like object containing int, float, complex UncertainReal
or UncertainComplex elements.

• label (str) – A label to assign to the array. This label does not change labels previ-
ously assigned to array elements.

• names (list[str]) – The field names to use to create a structured array.

Returns An UncertainArray.

Examples:

Create an amps and a volts array and then calculate the resistances

>>> amps = la.uarray([ureal(0.57, 0.18), ureal(0.45, 0.12), ureal(0.68,
→˓ 0.19)])
>>> volts = la.uarray([ureal(10.3, 1.3), ureal(9.5, 0.8), ureal(12.6,
→˓1.9)])
>>> resistances = volts / amps
>>> resistances
uarray([ureal(18.070175438596493,6.145264246839438,inf),

ureal(21.11111111111111,5.903661880050747,inf),
ureal(18.52941176470588,5.883187720636909,inf)])

Create a Structured array, with the names 'amps' and 'volts', and then calculate the resis-
tances.

>>> data = la.uarray([(ureal(0.57, 0.18), ureal(10.3, 1.3)),
... (ureal(0.45, 0.12), ureal(9.5, 0.8)),
... (ureal(0.68, 0.19), ureal(12.6, 1.9))], names=['amps
→˓', 'volts'])
>>> resistances = data['volts'] / data['amps']
>>> resistances
uarray([ureal(18.070175438596493,6.145264246839438,inf),

ureal(21.11111111111111,5.903661880050747,inf),
ureal(18.52941176470588,5.883187720636909,inf)])

dot(lhs, rhs)
Dot product of two arrays.

For more details see numpy.dot().

New in version 1.1.

Parameters

• lhs – The array-like object on the left-hand side.

• rhs – The array-like object on the right-hand side.

Returns The dot product.

2.8. Linear Algebra 49

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.scipy.org/doc/numpy/user/basics.rec.html#structured-arrays
https://docs.scipy.org/doc/numpy/user/basics.rec.html#structured-arrays
https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html#numpy.dot

GUM Tree Calculator Documentation, Release 1.2.0

Return type UncertainArray

matmul(lhs, rhs)
Matrix product of a pair of two-dimensional arrays.

For more details see numpy.matmul.

New in version 1.1.

Parameters

• lhs – 2D array-like object.

• rhs – 2D array-like object.

Returns The matrix product.

Return type UncertainArray

solve(a, b)
Return 𝑥, the solution of 𝑎 · 𝑥 = 𝑏

New in version 1.1.

Parameters

• a – 2D UncertainArray

• b – UncertainArray

Return type UncertainArray

Example:

>>> a = la.uarray([[-2,3],[-4,1]])
>>> b = la.uarray([4,-2])
>>> la.solve(a,b)
uarray([1.0, 2.0])

inv(a)
Return the (multiplicative) matrix inverse

New in version 1.1.

Example:

>>> x = la.uarray([[2,1],[3,4]])
>>> x_inv =la.inv(x)
>>> la.matmul(x,x_inv)
uarray([[1.0, 0.0],

[4.440892098500626e-16, 1.0]])

det(a)
Return the matrix determinant

New in version 1.1.

Example:

>>> x = la.uarray(range(4))
>>> x.shape = 2,2
>>> print(x)
[[0 1]
[2 3]]
>>> la.det(x)
-2.0

identity(n)
Return an identity array with n dimensions

50 Chapter 2. GTC Modules

https://docs.scipy.org/doc/numpy/reference/generated/numpy.matmul.html#numpy.matmul

GUM Tree Calculator Documentation, Release 1.2.0

New in version 1.1.

Example:

>>> la.identity(3)
uarray([[1, 0, 0],

[0, 1, 0],
[0, 0, 1]])

zeros(shape)
Return an array of shape shape containing 0 elements

New in version 1.1.

Example:

>>> la.zeros((2,3))
uarray([[0, 0, 0],

[0, 0, 0]])

ones(shape)
Return an array of shape shape containing 1 elements

New in version 1.1.

Example:

>>> la.ones((2,3))
uarray([[1, 1, 1], [1, 1, 1]])

empty(shape)
Return an array of shape shape containing None elements

New in version 1.1.

Example:

>>> la.empty((2,3))
uarray([[None, None, None],

[None, None, None]])

full(shape, fill_value)
Return an array of shape shape containing fill_value elements

New in version 1.1.

Example:

>>> la.full((1,3),ureal(2,1))
uarray([[ureal(2.0,1.0,inf), ureal(2.0,1.0,inf),

ureal(2.0,1.0,inf)]])

transpose(a, axes=None)
Array transpose

For more details see numpy.transpose().

New in version 1.1.

Parameters a – The array-like object

Returns The transpose

Return type UncertainArray

UncertainArray

2.8. Linear Algebra 51

https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html#numpy.transpose

GUM Tree Calculator Documentation, Release 1.2.0

52 Chapter 2. GTC Modules

CHAPTER 3

Examples

3.1 Examples

3.1.1 GUM Appendices

Gauge block measurement (GUM H1)

An example from Appendix H1 of the GUM1.

• Code

• Explanation

Code

from __future__ import print_function
from GTC import *

print("""

Example from Appendix H1 of GUM

""")

Lengths are in nm
d0 = ureal(215,5.8,24,label='d0')
d1 = ureal(0.0,3.9,5,label='d1')
d2 = ureal(0.0,6.7,8,label='d2')

Intermediate quantity 'd'
d = d0 + d1 + d2

(continues on next page)

1 BIPM and IEC and IFCC and ISO and IUPAC and IUPAP and OIML, Evaluation of measurement data - Guide to the expression of
uncertainty in measurement JCGM 100:2008 (GUM 1995 with minor corrections), (2008) http://www.bipm.org/en/publications/guides/gum

53

http://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

alpha_s = ureal(11.5E-6, type_b.uniform(2E-6),label='alpha_s')
d_alpha = ureal(0.0, type_b.uniform(1E-6), 50,label='d_alpha')
d_theta = ureal(0.0, type_b.uniform(0.05), 2,label='d_theta')

theta_bar = ureal(-0.1,0.2,label='theta_bar')
Delta = ureal(0.0, type_b.arcsine(0.5),label='Delta')

Intermediate quantity 'theta'
theta = theta_bar + Delta

l_s = ureal(5.0000623E7,25,18,label='l_s')

two more intermediate steps
tmp1 = l_s * d_alpha * theta
tmp2 = l_s * alpha_s * d_theta

Final equation for the measurement result
l = result(l_s + d - (tmp1 + tmp2), label='l')

print("Measurement result for l={}".format(l))

print("""
Components of uncertainty in l (nm)
-----------------------------------""")

for l_i,u_i in reporting.budget(l):
print(" {!s}: {:G}".format(l_i,u_i))

Explanation

The measurand is the length of an end-gauge at 20 ∘C. The measurement equation is2

𝑙 = 𝑙s + 𝑑− 𝑙s(𝛿𝛼𝜃 + 𝛼s𝛿𝜃) ,

where

• 𝑙s - the length of the standard

• 𝑑 - the difference in length between the standard and the end-gauge

• 𝛿𝛼 - the difference between coefficients of thermal expansion for the standard and the end-gauge

• 𝜃 - the deviation in temperature from 20 ∘C

• 𝛼s - the coefficient of thermal expansion for the standard

• 𝛿𝜃 - the temperature difference between the standard and the end-gauge

The calculation proceeds in stages. First, three inputs are defined:

• the length difference measurement(d0) using the comparator, which is the arithmetic mean of several indi-
cations;

• an estimate of comparator random errors (d1) and

• an estimate of comparator systematic errors (d2).

These are used to define the intermediate result d

2 In fact, the GUM uses more terms to calculate the uncertainty than are defined: quantities 𝑑 and 𝜃 depend on more than one influence
quantity.

54 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

d0 = ureal(215,5.8,24,label='d0')
d1 = ureal(0.0,3.9,5,label='d1')
d2 = ureal(0.0,6.7,8,label='d2')

Intermediate quantity 'd'
d = d0 + d1 + d2

Then terms are introduced to account for temperature variability and thermal properties of the gauge blocks.

In particular, the quantity 𝜃 is defined in terms of two other input quantities

𝜃 = 𝜃 + ∆

where

• 𝜃 is the mean deviation of the test-bed temperature from 20 ∘C

• ∆ is a cyclical error in the test-bed temperature

In defining these inputs, functions type_b.uniform() and type_b.arcsine() convert the widths of
particular error distributions into standard uncertainties3.

alpha_s = ureal(11.5E-6, type_b.uniform(2E-6), label='alpha_s')
d_alpha = ureal(0.0, type_b.uniform(1E-6), 50, label='d_alpha')
d_theta = ureal(0.0, type_b.uniform(0.05), 2, label='d_theta')

theta_bar = ureal(-0.1,0.2, label='theta_bar')
Delta = ureal(0.0, type_b.arcsine(0.5), label='Delta')

Intermediate quantity 'theta'
theta = theta_bar + Delta

The length of the standard gauge block is given in a calibration report

l_s = ureal(5.0000623E7,25,18,label='ls')

two more intermediate results, representing thermal errors, are then

two more intermediate steps
tmp1 = l_s * d_alpha * theta
tmp2 = l_s * alpha_s * d_theta

Finally, the length of the gauge block is evaluated

Final equation for the measurement result
l = result(l_s + d - (tmp1 + tmp2), label='l')

The script then evaluates the measurement result

print("Measurement result for l={}".format(l))

which displays

Measurement result for l=50000838(32)

and the following commands display the components of uncertainty for l, due to each influence:

print("""
Components of uncertainty in l (nm)
-----------------------------------""")

(continues on next page)

3 ureal creates a new uncertain real number. It takes a standard uncertainty as its second argument.

3.1. Examples 55

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

for l_i,u_i in reporting.budget(l):
print(" {!s}: {:G}".format(l_i,u_i))

The output is

Components of uncertainty in l (nm)

ls: 25
d_theta: 16.599
d2: 6.7
d0: 5.8
d1: 3.9
d_alpha: 2.88679
alpha_s: 0
theta_bar: 0
Delta: 0

Resistance and reactance measurement (GUM H2)

An example from Appendix H2 of the GUM1.

• Code

• Explanation

– Calculating the expanded uncertainty

Code

from __future__ import print_function
from GTC import *

print("""

Example from Appendix H2 of GUM

""")

V = ureal(4.999,3.2E-3,independent=False) # volt
I = ureal(19.661E-3,9.5E-6,independent=False) # amp
phi = ureal(1.04446,7.5E-4,independent=False) # radian

set_correlation(-0.36,V,I)
set_correlation(0.86,V,phi)
set_correlation(-0.65,I,phi)

R = result(V * cos(phi) / I)
X = result(V * sin(phi) / I)
Z = result(V / I)

print('R = {}'.format(R))
print('X = {}'.format(X))
print('Z = {}'.format(Z))
print

(continues on next page)

1 BIPM and IEC and IFCC and ISO and IUPAC and IUPAP and OIML, Evaluation of measurement data - Guide to the expression of
uncertainty in measurement JCGM 100:2008 (GUM 1995 with minor corrections), (2008) http://www.bipm.org/en/publications/guides/gum

56 Chapter 3. Examples

http://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

print('Correlation between R and X = {:+.2G}'.format(get_correlation(R,X)))
print('Correlation between R and Z = {:+.2G}'.format(get_correlation(R,Z)))
print('Correlation between X and Z = {:+.2G}'.format(get_correlation(X,Z)))

print("""
(These are not exactly the same values reported in the GUM.
There is some numerical round-off error in the GUM's calculations.)
""")

Explanation

Several quantities associated with an electrical component in an AC electrical circuit are of interest here. Mea-
surements of the resistance 𝑅, the reactance 𝑋 and the magnitude of the impedance |𝑍| are required. These can
be obtained by measuring voltage 𝑉 , current 𝐼 and phase angle 𝜑 and then using the measurement equations:

𝑅 = 𝑉 𝐼 cos𝜑

𝑋 = 𝑉 𝐼 sin𝜑

|𝑍| = 𝑉 𝐼

Five repeat measurements of each quantity are performed. The mean values, and associated uncertainties (type-
A analysis) provide estimates of voltage, current and phase angle. The correlation coefficients between pairs of
estimates is also calculated.

This information is used to define three inputs to the calculation and assign correlation coefficients (the additional
argument independent=False is required for set_correlation to be used).

V = ureal(4.999,3.2E-3,independent=False) # volt
I = ureal(19.661E-3,9.5E-6,independent=False) # amp
phi = ureal(1.04446,7.5E-4,independent=False) # radian

set_correlation(-0.36,V,I)
set_correlation(0.86,V,phi)
set_correlation(-0.65,I,phi)

Estimates of the three required quantities are then

R = result(V * cos(phi) / I)
X = result(V * sin(phi) / I)
Z = result(V / I)

Results are displayed by

print 'R = {}'.format(R)
print 'X = {}'.format(X)
print 'Z = {}'.format(Z)
print
print 'Correlation between R and X = {:+.2G}'.format(get_correlation(R,X))
print 'Correlation between R and Z = {:+.2G}'.format(get_correlation(R,Z))
print 'Correlation between X and Z = {:+.2G}'.format(get_correlation(X,Z))

The output is

R = 127.732(70)
X = 219.85(30)
Z = 254.26(24)

Correlation between R and X = -0.59
Correlation between R and Z = -0.49
Correlation between X and Z = +0.99

3.1. Examples 57

GUM Tree Calculator Documentation, Release 1.2.0

Calculating the expanded uncertainty

The expanded uncertainties for R, X and Z are not evaluated in the GUM, because the Welch-Satterthwaite equation
for the effective degrees of freedom is invalid when input estimates are correlated. We created V, I and phi with
infinite degrees of freedom, the default).

However, an alternative calculation is applicable in this case2. There are two different ways to carry out the
calculation in GTC. One uses type_a.multi_estimate_real(), the other uses multiple_ureal().

multiple_ureal() creates several elementary uncertain real numbers that are associated with each other
(called an ensemble in GTC). The documentation shows this applied to the GUM H2 example.

type_a.multi_estimate_real(), performs a type-A analysis on raw data (three sets of five readings) and
returns an ensemble of elementary uncertain real numbers. The documentation shows this applied to the GUM H2
example.

Note: The impedance calculation can also be treated as a complex-valued problem, so there are other
functions that can do data processing of uncertain complex numbers. The documentation for type_a.
multi_estimate_complex() and multiple_ucomplex() both use GUM H2 as an example.

Calibration of a thermometer (GUM H3)

An example from Appendix H3 of the GUM1.

• Code

• Explanation

• Other error models

– Known variance

– Systematic error in the standard temperature

Code

from __future__ import print_function
from GTC import *

print("""

Example from Appendix H3 of GUM

""")
Thermometer readings (degrees C)
t = (21.521,22.012,22.512,23.003,23.507,23.999,24.513,25.002,25.503,26.010,26.511)

Observed differences with calibration standard (degrees C)
b = (-0.171,-0.169,-0.166,-0.159,-0.164,-0.165,-0.156,-0.157,-0.159,-0.161,-0.160)

Arbitrary offset temperature (degrees C)
t_0 = 20.0

(continues on next page)

2 R Willink, ‘A generalization of the Welch-Satterthwaite formula for use with correlated uncertainty components’, Metrologia 44 (2007)
340-349, Sec. 4.1

1 BIPM and IEC and IFCC and ISO and IUPAC and IUPAP and OIML, Evaluation of measurement data - Guide to the expression of
uncertainty in measurement JCGM 100:2008 (GUM 1995 with minor corrections), (2008) http://www.bipm.org/en/publications/guides/gum

58 Chapter 3. Examples

http://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

Calculate the temperature relative to t_0
t_rel = [t_k - t_0 for t_k in t]

Least-squares regression
cal = type_a.line_fit(t_rel,b)
print(cal)
print

Apply correction at 30 C
b_30 = cal.intercept + cal.slope*(30.0 - t_0)

print("Correction at 30 C: {}".format(b_30))

Explanation

A thermometer is calibrated by comparing 11 readings 𝑡𝑘 with corresponding values of a temperature reference
standard 𝑡R·𝑘.

The readings and the differences 𝑏𝑘 = 𝑡R·𝑘 − 𝑡𝑘 are used to calculate the slope and intercept of a calibration line,
which can be used to estimate a temperature correction for a thermometer reading, including the uncertainty.

A linear model of the thermometer is assumed,

𝐵𝑘 = 𝑌1 + 𝑌2(𝑡𝑘 − 𝑡0) + 𝐸𝑘

An arbitrary fixed temperature 𝑡0 is chosen for convenience, 𝑡𝑘 is the temperature indicated by the thermometer
and 𝐵𝑘 is the correction that should be applied to a reading. The constants 𝑌1 and 𝑌2 define a linear relationship
between the indicated temperature and the correction 𝐵𝑘 (𝑌1 and 𝑌2 correspond to the intercept and slope).

The accuracy of the temperature standard is high, so values of 𝑡R·𝑘 have no significant error. However, the
estimates obtained for the difference between the actual temperature and the indicated temperature are 𝑏𝑘 are
subject to error.

Estimates of the intercept and slope are obtained by least-squares regression on 𝑏𝑘 and 𝑡𝑘. The uncertainty in these
estimates is due to random fluctuations in the measurement system (represented by 𝐸𝑘) .

In the GTC calculation, data are contained in a pair of sequences. The function type_a.line_fit() performs
the regression.

Thermometer readings (degrees C)
t = (21.521,22.012,22.512,23.003,23.507,23.999,24.513,25.002,25.503,26.010,26.511)

Observed differences with calibration standard (degrees C)
b = (-0.171,-0.169,-0.166,-0.159,-0.164,-0.165,-0.156,-0.157,-0.159,-0.161,-0.160)

Arbitrary offset temperature (degrees C)
t_0 = 20.0

Calculate the temperature relative to t_0
t_rel = [t_k - t_0 for t_k in t]

Least-squares regression
cal = type_a.line_fit(t_rel,b)
print cal
print

The fitted calibration line can be used to calculate a correction for a reading of 30 C

3.1. Examples 59

GUM Tree Calculator Documentation, Release 1.2.0

Apply correction at 30 C
b_30 = cal.intercept + cal.slope*(30.0 - t_0)

print("Correction at 30 C: {}".format(b_30))

The results agree with the numbers reported in the GUM

Example from Appendix H3 of GUM

Ordinary Least-Squares Results:

Intercept: -0.1712(29)
Slope: 0.00218(67)
Correlation: -0.93
Sum of the squared residuals: 0.000110096583109
Number of points: 11

Correction at 30 C: -0.1494(41)

Other error models

In GUM appendix H.3.6, two alternative scenarios are considered for the thermometer calibration.

Known variance

In the first, the variance of the b_k data is assumed known from prior calibrations.

There are two ways to do this regression problem with GTC.

One way is to define a sequence with the uncertainties of the respective b_k observations. This sequence can be
used with type_a.line_fit_wls() to obtain the slope and intercept. The other way is to define a sequence
of uncertain real numbers representing the b_k data and use the function type_b.line_fit()

u_b = 0.001 # an arbitrary value, just as an example
cal = type_b.line_fit(t_rel,[ureal(b_i,u_b) for b_i in b])

in either case, the results obtained can be used as above to evaluate corrections.

Systematic error in the standard temperature

The other scenario considers a systematic error that causes all b_k values to have some constant offset error. A
type-A analysis can still be used on the data to evaluate the contribution to uncertainty due to system instability.
However, the systematic error cannot be evaluated by a statistical analysis (it is constant).

This can be handled by combining the results from both type-A and type-B regression analyses.

First, we define a sequence of uncertain real numbers for the b_k data, in which a term representing the systematic
error is included

E_sys = ureal(0,0.005)
b_sys = [b_i + E_sys for b_i in b]
cal_b = type_b.line_fit(t_rel,b_sys)
print cal_b

Note that E_sys, which represents the systematic error, is defined outside the list and then added to each list
element. The results are

60 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

Ordinary Least-Squares Results:

Intercept: -0.1712(50)
Slope: 0.00218269773988727725(16)
Correlation: -1
Sum of the squared residuals: 0.000110096583109
Number of points: 11

The standard uncertainty in the slope is effectively zero (the small non-zero value can be attributed to numerical
round-off error), as expected: an error in the temperature standard shifts all values of b_k by the same amount, so
the slope does not change.

Second, a type-A regression analysis is done on the same b_k data sequence (this processes the uncertain-number
values, but ignores the uncertainies)

cal_a = ta.line_fit(t_rel,b_sys)
print cal_a

The results are

Ordinary Least-Squares Results:

Intercept: -0.1712(29)
Slope: 0.00218(67)
Correlation: -0.93
Sum of the squared residuals: 0.000110096583109
Number of points: 11

Notice that the slope and intercept are the same, but not the uncertainties or the correlation coefficient.

In a final step, the results are combined

intercept = ta.merge(cal_a.intercept,cal_b.intercept)
slope = ta.merge(cal_a.slope,cal_b.slope)

print(repr(intercept))
print(repr(slope))

which displays

ureal(-0.17120379013135004,0.00576893138292676,145.37964721007157)
ureal(0.0021826977398872894,0.0006679387732278323,9.0)

Notice that neither of the estimates, or the standard uncertainty in the slope, change as a result of merging. How-
ever, the standard uncertainty of the intercept does increase, due to uncertainty about the systematic error, as
described in H.3.6 in the GUM.

3.1.2 Linear calibration

Linear Regression Results

• Example

– Estimates of the slope and intercept

– The response

– A predicted future response

– Estimating the stimulus from observations of the response

3.1. Examples 61

GUM Tree Calculator Documentation, Release 1.2.0

Conventional least-squares regression of a line to a set of data estimates the parameters of a linear model (slope
and intercept) The best-fit line is sometimes called a calibration line.

Example

Linear regression is performed with x data, that are considered to be error-free stimuli, and y data that are obser-
vations subject to noise (random errors)

>>> x = [3, 7, 11, 15, 18, 27, 29, 30, 30, 31, 31, 32, 33, 33, 34, 36,
... 36, 36, 37, 38, 39, 39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 50]
>>> y = [5, 11, 21, 16, 16, 28, 27, 25, 35, 30, 40, 32, 34, 32, 34, 37,
... 38, 34, 36, 38, 37, 36, 45, 39, 41, 40, 44, 37, 44, 46, 46, 49, 51]

>>> fit = type_a.line_fit(x,y)

The object LineFitOLS (returned by type_a.line_fit()) contains the results of the regression and can
be used in different ways.

Estimates of the slope and intercept

Least-squares regression assumes that a model of the system is

𝑌 = 𝛼 + 𝛽 𝑥 + 𝐸 ,

where 𝛼 and 𝛽 are unknown parameters, 𝐸 is a random error with zero mean and unknown variance 𝜎2, 𝑥 is the
independent (stimulus) variable and 𝑌 is the response.

Least-squares regression returns the fit object, which holds uncertain numbers representing 𝛼 and 𝛽:

>>> a = fit.intercept
>>> a
ureal(3.82963319758869...,1.768447327250652...,31)
>>> b = fit.slope
>>> b
ureal(0.903643210579323...,0.05011897355918200...,31)
>>> get_correlation(a,b)
-0.948124070891915...

The response

The uncertain numbers a and b can be used to estimate the response to a particular stimulus, say 𝑥 = 21.5, in the
absence of noise:

>>> y = a + 21.5 * b
>>> y
ureal(23.2579622250441...,0.821607058888506...,31.0)

The result y is an estimate of 𝛼 + 21.5 × 𝛽. It is subject to uncertainty because the regression used a sample of
data.

A predicted future response

A single future indication in response to a given stimulus may also be of interest. Again, say 𝑥 = 21.5,

>>> y0 = fit.y_from_x(21.5)
>>> y0
ureal(23.2579622250441...,3.332409257957110...,31.0)

62 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

The value here is the same as above (because the stimulus is the same), but the uncertainty is much larger, reflecting
the variability of single indications as well as the underlying uncertainty in the intercept and slope.

Estimating the stimulus from observations of the response

Another possibility is that several indications of the response to a steady stimulus are collected. This sample of
data may be used to estimate the stimulus1.

Suppose three observations were collected [31.4, 29.3, 27.1]

>>> x0 = fit.x_from_y([31.4, 29.3, 27.1])
>>> x0
ureal(28.14942133275184...,2.175140873342519...,31.0)

x0 is an estimate of the stimulus based on the observations, but also taking into account the variability in the y
data used earlier in the regression.

Straight-line calibration functions

• Example 1: equal weights

– Application: an additional y observation after regression

– Forward evaluation: an additional x value

• Example 2: unequal weights

– Application: an additional y observation after regression

• Example 3: uncertainty in x and y

• Example 4: relative uncertainty in y

• Example 5: unknown uncertainty in y

– Application: an additional response

– Forward evaluation: an additional stimulus

This section uses straight-line least-squares regression algorithms to obtain calibration functions and then shows
some uses of those functions. Each example uses a small sample of x-y observation pairs for regression to obtain
a calibration function, together with information about the variability of the data. No context is given about
the measurement; these examples have been selected from a draft British standard on the use of straight-line
calibration functions1.

In some examples, we show how results can be used to estimate a stimulus value x, when given additional obser-
vations of the response y, or a future response y to a given stimulus x.

Example 1: equal weights

A series of six pairs of x-y observations have been collected.

The data sequences x and y and a sequence of uncertainties in the 𝑦 values are

1 This scenario is sometimes called calibration. The response of an instrument to a number of different reference stimuli is observed and a
calibration curve is calculated. The curve is then used in the opposite sense, to convert observations of the instrument response into estimates
of the stimulus applied.

1 These examples also appear in BS DD ISO/TS 28037:2010 Determination and use of straight-line calibration functions, (British Stan-
dards Institute, 2010).

3.1. Examples 63

GUM Tree Calculator Documentation, Release 1.2.0

x = [1,2,3,4,5,6]
y = [3.3,5.6,7.1,9.3,10.7,12.1]
u_y = [0.5] * 6

We apply weighted least-squares regression to the data, which assumes that the values in u_y are known standard
deviations for noise in y data (i.e., the data have infinite degrees of freedom)

fit = type_a.line_fit_wls(x,y,u_y)
print(fit)

This displays

Weighted Least-Squares Results:

Number of points: 6
Intercept: 1.87, u=0.47, df=inf
Slope: 1.76, u=0.12, df=inf
Correlation: -0.9
Sum of the squared residuals: 1.66476

More significant figures could be obtained with

a = fit.intercept
print("a={:.15G}, u={:.15G}".format(value(a),uncertainty(a)))
b = fit.slope
print("b={:.15G}, u={:.15G}".format(value(b),uncertainty(b)))
print("cov(1,b)={:.15G}"format(a.u*b.u*get_correlation(a,b)))

giving

a=1.86666666666667, u=0.465474668125631
b=1.75714285714286, u=0.119522860933439
cov(1,b)=-0.05

These results agree with published values2

a = 1.867, u(a) = 0.465
b = 1.757, u(b) = 0.120
cov(a,b) = -0.50
chi-squared = 1.665, with 4 degrees of freedom

The value of chi-squared can be compared with the Sum of the squared residuals above and the
degrees of freedom is the Number of points less 2.

Application: an additional y observation after regression

The results may be used to find a value for x that corresponds to another observation y made following the
regression. This is a typical application of a calibration curve.

For example, if an additional observation 𝑦1 = 10.5 has been made, with 𝑢(𝑦1) = 0.5, we can evaluate an
uncertain number for the corresponding stimulus 𝑥1:

y1 = ureal(10.5,0.5)
x1 = (y1-a)/b
print("x1={:.15G}, u={:.15G}".format(value(x1),uncertainty(x1)))

giving

2 Section 6.3, page 13, in BS DD ISO/TS 28037:2010.

64 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

x1=4.91327913279133, u=0.32203556012891

This uncertain number has components of uncertainty for the estimates of slope and intercept. So the combined
uncertainty takes account of uncertainty in the parameter estimates for the calibration curve, and correlation be-
tween them.

Forward evaluation: an additional x value

The results can also be used to estimate the response 𝑦2 to a stimulus 𝑥2.

For example, if 𝑥2 = 3.5, and 𝑢(𝑥2) = 0.2, we can evaluate an uncertain number for 𝑦2 as follows

x2 = ureal(3.5,0.2)
y2 = a + b*x2
print("y2={:.15G}, u={:.15G}".format(value(y2),uncertainty(y2)))

giving

y2=8.01666666666667, u=0.406409531732455

This is an uncertain number representing the mean, or underlying true, response to 𝑥2. Again, the uncertain
number for 𝑦2 has components of uncertainty for the estimates of slope and intercept.

Example 2: unequal weights

A series of six pairs of x-y observations have been collected.

The data sequences for x and y, with uncertainties in y, are

x = [1,2,3,4,5,6]
y = [3.2, 4.3, 7.6, 8.6, 11.7, 12.8]
u_y = [0.5,0.5,0.5,1.0,1.0,1.0]

Again, a weighted least-squares regression can be used, which assumes that the uncertainties in y values are
exactly known (i.e., infinite degrees of freedom)

fit = type_a.line_fit_wls(x,y,u_y)
print(fit)

This generates

Weighted Least-Squares Results:

Number of points: 6
Intercept: 0.89, u=0.53, df=inf
Slope: 2.06, u=0.18, df=inf
Correlation: -0.87
Sum of the squared residuals: 4.1308

More significant figures can be obtained by the same commands used in Example 1:

a=0.885232067510549, u=0.529708143508836
b=2.05696202531646, u=0.177892016741205
cov(1,b)=-0.0822784810126582

These results agree with published values3

3 Section 6.3, page 15, in BS DD ISO/TS 28037:2010.

3.1. Examples 65

GUM Tree Calculator Documentation, Release 1.2.0

a = 0.885, u(a) = 0.530
b = 2.057, u(b) = 0.178
cov(a,b) = -0.082
chi-squared = 4.131, with 4 degrees of freedom

Application: an additional y observation after regression

After regression, the uncertain numbers for the intercept and slope can be used to estimate the stimulus 𝑥1 for a
further observation 𝑦1. For example, if 𝑦1 = 10.5 and 𝑢(𝑦1) = 1.0, 𝑥1 is obtained in the same way as Example 1

y1 = ureal(10.5,1)
x1 = (y1-a)/b
print("x1={:.15G}, u={:.15G}".format(value(x1),uncertainty(x1))

giving

x1=4.67425641025641, u=0.533180902231294

Example 3: uncertainty in x and y

A series of six pairs of observations have been collected.

The data sequences for x, y, each with uncertainties are

x = [1.2,1.9,2.9,4.0,4.7,5.9]
u_x = [0.2] * 6
y = [3.4,4.4,7.2,8.5,10.8,13.5]
u_y = [0.2,0.2,0.2,0.4,0.4,0.4]

We use total least-squares regression in this case, because there is uncertainty in both the dependent and indepen-
dent variablest

fit = type_a.line_fit_wtls(x,y,u_x,u_y,fit_i.a_b)
print(fit)

which gives

Weighted Total Least-Squares Results:

Intercept: 0.58(48)
Slope: 2.16(14)
Correlation: -0.9
Sum of the squared residuals: 2.74267678973

Number of points: 6

Again, more figures can be obtained using the same commands as in Example 1

a=0.578822122145264, u=0.480359046511757
b=2.15965656740064, u=0.136246483136605
cov(1,b)=-0.0586143419560877

These results agree with the published values4

a = 0.5788, u(a) = 0.0.4764
b = 2.159, u(b) = 0.1355
cov(a,b) = -0.0577
chi-squared = 2.743, with 4 degrees of freedom

4 Section 7.4, page 21, in BS DD ISO/TS 28037:2010.

66 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

(There are slight differences due to a different number of iterations in the TLS calculation.)

Example 4: relative uncertainty in y

A series of six pairs of x-y observations are used. The uncertainties in the 𝑦 values are not known. However, a
scale factor 𝑠𝑦 is given and it is assumed that, for every observation 𝑦, the associated uncertainty 𝑢(𝑦) = 𝑠𝑦𝜎. The
common factor 𝜎 is not known, but can be estimated from the residuals. This is done by the function type_a.
line_fit_rwls().

We proceed as above

x = [1,2,3,4,5,6]
y = [3.014,5.225,7.004,9.061,11.201,12.762]
u_y = [1] * 6
fit = type_a.line_fit_rwls(x,y,u_y)

print(fit)

which displays

Relative Weighted Least-Squares Results:

Intercept: 1.17(16)
Slope: 1.964(41)
Correlation: -0.9
Sum of the squared residuals: 0.116498285714
Number of points: 6

More precise values of the fitted parameters are

a=1.172, u=0.158875093196181
b=1.96357142857143, u=0.0407953578791729
cov(a,b)=-0.00582491428571429

These results agree with the published values5

a = 1.172, u(a) = 0.159
b = 1.964, u(b) = 0.041
cov(a,b) = -0.006
chi-squared = 0.171, with 4 degrees of freedom

Note: In our solution, 4 degrees of freedom are associated with estimates of the intercept and slope. This is
the usual statistical treatment. However, a trend in recent uncertainty guidelines is to dispense with the notion of
degrees of freedom. So, in a final step, reference1 multiplies 𝑢(𝑎) and 𝑢(𝑏) by an additional factor of 2. We do
not agree with this last step. GTC uses the finite degrees of freedom associated with the intercept and slope to
calculate the coverage factor required for an expanded uncertainty.

Example 5: unknown uncertainty in y

The data in previous example could also have been processed by an ‘ordinary’ least-squares regression algorithm,
because the scale factor for each observation of y was unity. In effect, a series of six values for the dependent and
independent variables were collected, and the variance associated with each observation was assumed to be the
same.

We proceed as follows. The data sequences are defined and the ordinary least-squares function is applied
5 Appendix E, pages 58-59, in BS DD ISO/TS 28037:2010.

3.1. Examples 67

GUM Tree Calculator Documentation, Release 1.2.0

x = [1,2,3,4,5,6]
y = [3.014,5.225,7.004,9.061,11.201,12.762]
fit = type_a.line_fit(x,y)

print(fit)

which displays

Ordinary Least-Squares Results:

Intercept: 1.17(16)
Slope: 1.964(41)
Correlation: -0.9
Sum of the squared residuals: 0.116498285714
Number of points: 6

More precise values of the fitted parameters are

a=1.172, u=0.158875093196181
b=1.96357142857143, u=0.0407953578791729
cov(a,b)=-0.00582491428571429

The same results were obtained in Example 4.

Application: an additional response

After regression, if a further observation of 𝑦 becomes available, or a set of observations, then the corresponding
stimulus can be estimated.

For example, if we wish to know the stimulus 𝑥1 that gave rise to a response 𝑦1 = 10.5, we can use the object
fit returned by the regression (note that x_from_y() takes a sequence of y values)

y1 = 10.5
x1 = fit.x_from_y([y1])
print(x1)

which displays

4.751(97)

Forward evaluation: an additional stimulus

The regression results can also be used to predict a single future response 𝑦 for a given stimulus 𝑥.

For example, if 𝑥2 = 3.5 we can find 𝑦2 as follows

x2 = 3.5
y2 = fit.y_from_x(x2)
print(y2)

giving

8.04(18)

In this case, the uncertainty reported for 𝑦2 includes a component for the variability of individual responses. The
method y_from_x() incorporates this information from the regression analysis.

Alternatively, the mean response to a stimulus 𝑥2 can be obtained directly from the fitted parameters

68 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

x2 = 3.5
a, b = fit.a_b
y2 = a + b*x2
print(y2)

which gives

8.044(70)

Linear Calibration Equations

This section applies GTC to a simple calibration problem1.

• Calibration

– Measurement model

– A 2-point calibration curve

– The non-linearity error

– The calibration equation

• Linearising the sensor response

– The new calibration equation

Calibration

A pressure sensor with an approximately linear response is to be calibrated.

Eleven reference pressures are accurately generated and the corresponding sensor indications are recorded. The
standard pressure values are entered in the‘y_data‘ sequence and sensor readings in x_data (data from Table 4
in1):

>>> y_data = (0.0,2.0,4.0,6.0,8.0,10.0,12.0,14.0,16.0,18.0,20.0)
>>> x_data = (0.0000,0.2039,0.4080,0.6120,0.8160,1.0201,1.2242,1.4283,1.6325,1.
→˓8367,2.0410)

The sensor indication does not change when observations are repeated at the same reference pressure values,
which suggests that the digital resolution of the sensor is much less than any repeatability errors associated with
calibration. So we ignore random noise as a source of error.

Measurement model

A linear model of the sensor’s behaviour is

𝑌 = 𝛼 + 𝛽 𝑋 ,

where 𝑌 represents the applied pressure and 𝑋 the sensor response.

In operation, the sensor indication, 𝑥 is taken as an estimate of 𝑋 . The relationship between an applied pressure
𝑌𝑖 and the indication 𝑥𝑖 may be expressed as

𝑌𝑖 = 𝛼 + 𝛽 (𝑥𝑖 − 𝐸res·𝑖) + 𝐸lin·𝑖

where 𝐸res·𝑖 and 𝐸lin·𝑖 are errors.
1 R Kessel, R N Kacker and K-D Sommer, Uncertainty budget for range calibration, Measurement 45 (2012) 1661 – 1669.

3.1. Examples 69

GUM Tree Calculator Documentation, Release 1.2.0

𝐸res·𝑖 is a round-off error due to the finite number of digits displayed (i.e., instead of 𝑋𝑖, the number displayed is
𝑥𝑖 = 𝑋𝑖 + 𝐸res·𝑖).

𝐸lin·𝑖 is the difference between an actual applied pressure 𝑌𝑖 and the pressure predicted by the linear model
𝛼 + 𝛽 𝑋𝑖.

During calibration, the applied reference pressure 𝑌cal·𝑖 is not known exactly. The nominal reference pressure is

𝑦cal·𝑖 = 𝑌cal·𝑖 + 𝐸cal·𝑖 ,

where 𝐸cal·𝑖 is a measurement error in the reference. The uncertainty of 𝑦cal·𝑖 as an estimate of 𝑌cal·𝑖 is given as
a relative standard uncertainty

𝑢(𝑦cal·𝑖)

𝑦cal·𝑖
= 0.000115 .

A 2-point calibration curve

A calibration procedure estimates 𝛼 and 𝛽. The actual slope, 𝛽, is

𝛽 =
𝑌cal·10 − 𝑌cal·0

𝑋cal·10 −𝑋cal·0
.

Points near the ends of the range of data available are most influential when estimating the slope and intercept of
a linear calibration function, So, an estimate of the slope is

𝑏 =
𝑦cal·10 − 𝑦cal·0
𝑥cal·10 − 𝑥cal·0

.

Using uncertain numbers, this can be calculated

>>> u_ycal_rel = 0.000115
>>> u_res = type_b.uniform(0.00005)

>>> x_0 = x_data[0] - ureal(0,u_res,label='e_res_0')
>>> x_10 = x_data[10] - ureal(0,u_res,label='e_res_10')

>>> y_0 = ureal(y_data[0],y_data[0]*u_ycal_rel,label='y_0')
>>> y_10 = ureal(y_data[10],y_data[10]*u_ycal_rel,label='y_10')

>>> b = (y_10 - y_0)/(x_10 - x_0)
>>> a = y_10 - b * x_10

The results for a and b, as well as the correlation coefficient, are

>>> a
ureal(0.0,0.0002828761730473424,inf)
>>> b
ureal(9.799118079372857,0.0011438175474686209,inf)
>>> get_correlation(a,b)
-0.12117041864179227

The non-linearity error

Using the remainder of the calibration data, we can compare the calibration line with the calibration data points
and thereby assess the importance of non-linear sensor response across the range. The following will display a
table of differences between the data and the model

70 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

>>> for x_i,y_i in zip(x_data,y_data):
... dif = y_i - (x_i * b + a)
... print("x={:G}, dif={}".format(x_i,dif))
...
x=0, dif=...0.00000(28)
x=0.2039, dif=0.00196(34)
x=0.408, dif=0.00196(52)
x=0.612, dif=0.00294(72)
x=0.816, dif=0.00392(94)
x=1.0201, dif=0.0039(12)
x=1.2242, dif=0.0039(14)
x=1.4283, dif=0.0039(16)
x=1.6325, dif=0.0029(19)
x=1.8367, dif=0.0020(21)
x=2.041, dif=0.0000(23)

A maximum deviation (worst case error) is taken to be 0.005.[#Kessel]_ This amount of deviation is assumed to
cover departures from linearity of the sensor2.

The calibration equation

We now have sufficient information to define a calibration function that takes a sensor indication and returns an
uncertain number for applied pressure. For instance,

>>> u_lin = type_b.uniform(0.005)
>>> u_res = type_b.uniform(0.00005)

>>> a = ureal(0.0,0.00028,label='a',independent=False)
>>> b = ureal(9.79912, 0.00114,label='b',independent=False)
>>> set_correlation(-0.1212,a,b)

>>> def cal_fn(x):
... """-> pressure estimate
... :arg x: sensor reading (a number)
... :returns: an uncertain number representing the applied pressure
... """
... e_res_i = ureal(0,u_res,label='e_res_i')
... e_lin_i = ureal(0,u_lin,label='e_lin_i')
... return a + b * (x + e_res_i) + e_lin_i
...

With this function, we can calculate pressures and expanded uncertainties (𝑘 = 2) for the calibration data, which
can be compared with Table 7 in the reference1

>>> for i,x_i in enumerate(x_data):
... y_i = cal_fn(x_i)
... print("{}: p={:G}, U(p)={:G}".format(i,y_i.x,2*y_i.u))
...
0: p=0, U(p)=0.00582812
1: p=1.99804, U(p)=0.00584124
2: p=3.99804, U(p)=0.00589119
3: p=5.99706, U(p)=0.00597701
4: p=7.99608, U(p)=0.0060972
5: p=9.99608, U(p)=0.00624986
6: p=11.9961, U(p)=0.00643263
7: p=13.9961, U(p)=0.00664303
8: p=15.9971, U(p)=0.00687865

(continues on next page)

2 The uncertainty due to linearity errors can be estimated later by comparing the calibration data with the pressure predicted by the linear
calibration curve.

3.1. Examples 71

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

9: p=17.998, U(p)=0.00713689
10: p=20, U(p)=0.00741554

Linearising the sensor response

With additional information about the typical behaviour of this type of sensor, we can pre-process readings and
improve the linearity of the response. The following equation takes a raw indication 𝑥 and returns a value that will
vary more linearly with applied pressure than 𝑥. The effect of 𝑓lin is to reduce the difference between the pressure
estimates and actual pressures.

𝑓lin(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3

The coefficients 𝑐𝑖 apply to the type of sensor; they are not determined as part of the calibration procedure. No
uncertainty need be associated with these numbers.

The pre-processing function can be implemented as

>>> def f_lin(x):
... """improve sensor linearity"""
... c0 = 0.0
... c1 = 9.806
... c2 = -2.251E-3
... c3 = -5.753E-4
... return c0 + (c1 + (c2 + c3*x)*x)*x
...

Our model of the measurement is now

𝑌𝑖 = 𝛼 + 𝛽 𝑓lin(𝑥𝑖 − 𝐸res·𝑖) + 𝐸lin·𝑖

To calibrate this ‘linearised’ sensor, the original indications 𝑥cal·10 and 𝑥cal·0 are transformed by 𝑓lin(𝑋) before
calculating the slope and intercept (this transformation also takes account of the reading error).

>>> u_ycal_rel = 0.000115
>>> u_res = type_b.uniform(0.00005)

>>> x_0 = f_lin(x_data[0] - ureal(0,u_res,label='e_res_0'))
>>> x_10 = f_lin(x_data[10] - ureal(0,u_res,label='e_res_10'))

>>> y_0 = ureal(y_data[0],y_data[0]*u_ycal_rel,label='y_0')
>>> y_10 = ureal(y_data[10],y_data[10]*u_ycal_rel,label='y_10')

>>> b = (y_10 - y_0)/(x_10 - x_0)
>>> a = y_10 - b * x_10

The results are

>>> a
ureal(0.0,0.00028307798251305335,inf)
>>> b
ureal(1.000011112006328,0.00011672745986082041,inf)
>>> get_correlation(a,b)
-0.12125729816056871

The differences between nominal standard values and the sensor estimates can be displayed by

>>> for x_i,y_i in zip(x_data,y_data):
... dif = y_i - (f_lin(x_i) * b + a)
... print("x={:G}, dif={}".format(x_i,dif))

(continues on next page)

72 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

...
x=0, dif=...0.00000(28)
x=0.2039, dif=0.00063(34)
x=0.408, dif=-0.00048(52)
x=0.612, dif=-0.00036(72)
x=0.816, dif=0.00003(94)
x=1.0201, dif=-0.0003(12)
x=1.2242, dif=-0.0002(14)
x=1.4283, dif=0.0002(16)
x=1.6325, dif=0.0000(19)
x=1.8367, dif=0.0003(21)
x=2.041, dif=0.0000(23)

Which shows that the differences are much smaller than before.

The worst-case error is now about ±0.0007.

The new calibration equation

A new calibration function that takes a sensor indication and returns the applied pressure can be defined

>>> u_lin = type_b.uniform(0.0007)
>>> u_res = type_b.uniform(0.00005)

>>> a = ureal(0.0,0.00028,label='a',independent=False)
>>> b = ureal(1.000011, 0.000117,label='b',independent=False)
>>> set_correlation(-0.1215,a,b)

>>> def lin_cal_fn(x):
... """-> linearised pressure estimate
... :arg x: sensor reading (a number)
... :returns: an uncertain number representing the applied pressure
... """
... e_res_i = ureal(0,u_res,label='e_res_i')
... e_lin_i = ureal(0,u_lin,label='e_lin_i')
... return a + b * f_lin(x + e_res_i) + e_lin_i
...

The improvement to accuracy can be seen by applying this function to the calibration data

>>> for i,x_i in enumerate(x_data):
... y_i = lin_cal_fn(x_i)
... print("{}: p={:0.5G}, U(p)={:.2G}".format(i,y_i.x,2*y_i.u))
...
0: p=0, U(p)=0.0011
1: p=1.9994, U(p)=0.0012
2: p=4.0005, U(p)=0.0014
3: p=6.0004, U(p)=0.0018
4: p=8, U(p)=0.0021
5: p=10, U(p)=0.0025
6: p=12, U(p)=0.003
7: p=14, U(p)=0.0034
8: p=16, U(p)=0.0038
9: p=18, U(p)=0.0043
10: p=20, U(p)=0.0047

3.1.3 EURACHEM / CITAC Guide Examples

3.1. Examples 73

GUM Tree Calculator Documentation, Release 1.2.0

Preparation of a Calibration Standard (A1)

This section is based on a measurement described in Appendix 1 of the 3rd edition of the EURACHEM / CITAC
Guide1.

The CITAC Guide gives a careful discussion of the uncertainty analysis leading to particular numerical values.
The following shows only how the subsequent calculation can be preformed using GTC.

The measurement

The concentration of Cd in a standard solution is to be determined.

This can be expressed by the equation

𝑐Cd =
1000 ·𝑚 · 𝑃

𝑉
,

where

• 𝑐Cd is the concentration expressed (mg/L),

• 1000 is a conversion factor from mL to L,

• 𝑚 is the mass of high purity metal (mg),

• 𝑃 is the purity of the metal as a mass fraction,

• 𝑉 is the volume of liquid of the standard (mL).

The uncertainty contributions

In section A1.4 of the CITAC Guide the numerical estimates of influence quantities are described. These can be
used to define uncertain numbers for the mass, purity and volume. The mass and purity are defined directly as
elementary uncertain numbers2:

>>> P = ureal(0.9999,type_b.uniform(0.0001),label='P')
>>> m = ureal(100.28,0.05,label='m') # mg

The volume has three influences that contribute to the overall uncertainty: the manufacturing tolerances of the
measuring flask, the repeatability of filling and the variability of temperature during the experiment. Each is
represented by an elementary uncertain number

>>> V_flask = ureal(100,type_b.triangular(0.1),label='V_flask')
>>> V_rep = ureal(0,0.02,label='V_rep')
>>> V_T = ureal(0,type_b.uniform(0.084),label='V_T')

Note that the value assigned to V_rep and V_T is zero. These represent repeatability error and the temperature
error incurred during the experiment. The best estimate of these errors is zero but the uncertainty is given in the
second argument to ureal.

After these definitions an uncertain number representing the volume of fluid is (we label the uncertain number for
convenience when reporting the uncertainty budget later)

>>> V = result(V_flask + V_rep + V_T,label = 'V')

1 On-line: http://www.citac.cc/QUAM2012_P1.pdf
2 Functions from the type_b module are used to scale the uncertainty parameter of a non-Gaussian error to obtain the standard deviation.

74 Chapter 3. Examples

http://www.citac.cc/QUAM2012_P1.pdf

GUM Tree Calculator Documentation, Release 1.2.0

The uncertainty calculation

The concentration calculation is then simply3

>>> c_Cd = 1000 * m * P / V
>>> print("c_Cd={:G}, u={:G}".format(c_Cd.x,c_Cd.u))
c_Cd=1002.7, u=0.835199

The contributions to the standard uncertainty can be itemised using reporting.budget():

>>> for cp,u in rp.budget(c_Cd):
... print(" {}: {:G}".format(cp,u))
...
m: 0.49995
V_T: 0.486284
V_flask: 0.40935
V_rep: 0.20054
P: 0.0578967

The contribution from the overall uncertainty in the volume of fluid, rather than the individual terms can also be
compared with other contributions by using a list of influences

>>> for cp,u in rp.budget(c_Cd,[m,P,V]):
... print(" {}: {:G}".format(cp,u))
...
V: 0.666525
m: 0.49995
P: 0.0578967

These results can be compared with Figure A1.5 in the CITAC Guide.

Standardising a Sodium Hydroxide Solution (A2)

This section is based on a measurement described in Appendix 2 of the 3rd edition of the EURACHEM / CITAC
Guide1.

The CITAC Guide gives a careful discussion of the uncertainty analysis leading to particular numerical values.
The following shows only how the subsequent calculation can be preformed using GTC.

The measurement

The concentration of a solution of NaOH is to be determined. The NaOH is titrated against the titrimetric standard
potassium hydrogen phthalate (KHP).

The measurand can be expressed as

𝑐NaOH =
1000 ·𝑚KHP · 𝑃KHP

𝑀KHP · 𝑉T
,

where

• 𝑐NaOH is the concentration expressed in mol/L,

• 1000 is a volume conversion factor from mL to L,

• 𝑚KHP is the mass of the titrimetric standard in g,

• 𝑃KHP is the purity of the titrimetric standard as a mass fraction,

• 𝑀KHP is the molar mass of KHP in g/mol,

3 The numbers differ slightly because numbers in the CITAC Guide calculations have been rounded
1 On-line: http://www.citac.cc/QUAM2012_P1.pdf

3.1. Examples 75

http://www.citac.cc/QUAM2012_P1.pdf

GUM Tree Calculator Documentation, Release 1.2.0

• 𝑉T is the titration volume of NaOH solution in mL.

The uncertainty contributions

Section A2.4 of the CITAC Guide provides numerical estimates of influence quantities, which can be used to
define uncertain numbers for the calculation.

The mass 𝑚KHP is determined from the difference of two weighings with balance linearity as the only source of
measurement error considered. However, a linearity error occurs twice: once in the tare weighing and once in
the gross weighing. So in the calculations we introduce the nett weight as a number (0.3888) and the uncertainty
contribution is found by taking the difference of uncertain numbers representing the errors that occur during
the weighings (if the raw observations were available, they might have been used to define u_lin_tare and
u_lin_gross)2.

>>> u_lin_tare = ureal(0,type_b.uniform(0.15E-3),label='u_lin_tare')
>>> u_lin_gross = ureal(0,type_b.uniform(0.15E-3),label='u_lin_gross')
>>> u_m_KHP = u_lin_gross - u_lin_tare
>>> m_KHP = result(0.3888 + u_m_KHP, label='m_KHP')

The purity 𝑃KHP is3

>>> P_KHP = ureal(1.0,type_b.uniform(0.0005),label='P_KHP')

The molar mass 𝑚KHP is calculated from IUPAC data and the number of each constituent element in the KHP
molecule C8H5O4K.

>>> M_C = ureal(12.0107,type_b.uniform(0.0008),label='M_C')
>>> M_H = ureal(1.00794,type_b.uniform(0.00007),label='M_H')
>>> M_O = ureal(15.9994,type_b.uniform(0.0003),label='M_O')
>>> M_K = ureal(39.0983,type_b.uniform(0.0001),label='M_K')

>>> M_KHP = result(8*M_C + 5*M_H + 4*M_O + M_K, label='M_KHP')

The volume term 𝑉T2 is affected by contributions from calibration error and temperature.

>>> uV_T_cal = ureal(0,type_b.triangular(0.03),label='V_T_cal')
>>> uV_T_temp = ureal(0,0.006,label='V_T_temp')

>>> V_T = result(18.64 + uV_T_cal + uV_T_temp, label='V_T')

The CITAC Guide introduces a further multiplicative term 𝑅 to represent repeatability errors (𝑅 ≈ 1)

𝑐NaOH = 𝑅
1000 ·𝑚KHP · 𝑃KHP

𝑀KHP · 𝑉T
,

In the GTC calculation this is represented by another uncertain number

>>> R = ureal(1.0,0.0005,label='R')

The uncertainty calculation

The calculation of 𝑐NaOH is now4:

>>> c_NaOH = R * (1000 * m_KHP * P_KHP)/(M_KHP * V_T)
>>> c_NaOH
ureal(0.102136159706...,0.000100500722124...,inf)

2 If the balance indications for the tare and gross weighings were known they could have been used to define the values of these uncertain
numbers, however the Guide does not provide this raw data. Instead, the zero value used here represents an estimate of the linearity error.

3 Functions from the type_b module are used here to scale the uncertainty parameters, as described in the CITAC Guide
4 The numbers differ slightly because numbers in the the CITAC Guide calculations have been rounded

76 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

The contribution from different influences can be examined (and compared with Fig. A2.9 in the Guide)

>>> for cpt,u in rp.budget(c_NaOH,[m_KHP,P_KHP,M_KHP,V_T,R]):
... print(" {}: {:G}".format(cpt,u))
...
V_T: 7.47292E-05
R: 5.10681E-05
m_KHP: 3.21735E-05
P_KHP: 2.94842E-05
M_KHP: 1.88312E-06

The full uncertainty budget is

>>> for cpt,u in rp.budget(c_NaOH):
... print(" {}: {:G}".format(cpt,u))
...
V_T_cal: 6.71088E-05
R: 5.10681E-05
V_T_temp: 3.28764E-05
P_KHP: 2.94842E-05
u_lin_tare: 2.27501E-05
u_lin_gross: 2.27501E-05
M_C: 1.84798E-06

An Acid/Base Titration (A3)

This section is based on a measurement described in Appendix Appendix 3 of the 3rd edition of the EURACHEM
/ CITAC Guide1.

The CITAC Guide gives a careful discussion of the uncertainty analysis leading to particular numerical values.
The following shows only how the subsequent calculation can be preformed using GTC.

The measurement

The method determines the concentration of an HCl solution by a sequence of experiments. This is a longer
calculation than the previous examples, so the code shown below should be considered as lines of text in a file that
can be executed by GTC.

The measurand can be expressed by

𝑐HCl =
1000 ·𝑚KHP · 𝑃KHP · 𝑉T2

𝑉T1 ·𝑀KHP · 𝑉HCl
,

where

• 𝑐HCl is the concentration expressed (mol/L),

• 1000 is a volume conversion factor from mL to L,

• 𝑚KHP is the mass of KHP taken (g),

• 𝑃KHP is the purity of KHP as a mass fraction,

• 𝑉T1 is the volume of NaOH to titrate KHP (mL).

• 𝑉T2 is the volume of NaOH to titrate HCl (mL).

• 𝑀KHP is the molar mass of KHP (g/mol),

• 𝑉T is the titration volume of NaOH solution (mL).
1 On-line: http://www.citac.cc/QUAM2012_P1.pdf

3.1. Examples 77

http://www.citac.cc/QUAM2012_P1.pdf

GUM Tree Calculator Documentation, Release 1.2.0

The uncertainty contributions

Section A3.4 of the CITAC Guide provides numerical estimates of influence quantities, which can be used to
define uncertain numbers for the uncertainty calculation.

The mass 𝑚KHP is determined from the difference of two weighings with balance linearity as the only source
of measurement error. However, a linearity error arises twice: once in the tare weighing and once in the gross
weighing. So, in the calculations we introduce the nett weight as a number (0.3888) and the uncertainty contribu-
tion is found by taking the difference of uncertain numbers representing estimates of the errors that occur during
the weighings (if the raw observations were available, they might have been used to define u_lin_tare and
u_lin_gross)2.

>>> u_lin_tare = ureal(0,type_b.uniform(0.15E-3),label='u_lin_tare')
>>> u_lin_gross = ureal(0,type_b.uniform(0.15E-3),label='u_lin_gross')
>>> m_KHP = result(0.3888 + u_lin_gross - u_lin_tare, label = 'm_KHP')

The purity 𝑃KHP is3

>>> P_KHP = ureal(1.0,type_b.uniform(0.0005),label='P_KHP')

The volume term 𝑉T2 is affected by contributions from calibration error and temperature. In calculating the
uncertainty contribution due to temperature, the volume expansion coefficient for water 2.1 × 10−4 ∘C−1 is used,
the volume of the pipette is 15 mL and the temperature range is ±4 ∘C.

>>> uV_T2_cal = ureal(0,type_b.triangular(0.03),label='V_T2_cal')
>>> uV_T2_temp = ureal(0,type_b.uniform(15 * 2.1E-4 * 4),label='V_T2_temp')

>>> V_T2 = result(14.89 + uV_T2_cal + uV_T2_temp, label='V_T2')

The influences of the volume term 𝑉T1 are almost the same as 𝑉T2, only the temperature contribution is different
because a 19 mL volume of NaOH was used.

>>> uV_T1_cal = ureal(0,type_b.triangular(0.03),label='V_T1_cal')
>>> uV_T1_temp = ureal(0,type_b.uniform(19 * 2.1E-4 * 4),label='V_T1_temp')

>>> V_T1 = result(18.64 + uV_T1_cal + uV_T1_temp, label = 'V_T1')

The molar mass 𝑚KHP is calculated from IUPAC data and the number of each constituent element in the KHP
molecule C8H5O4K. This can be done as follows

>>> M_C = ureal(12.0107,type_b.uniform(0.0008),label='M_C')
>>> M_H = ureal(1.00794,type_b.uniform(0.00007),label='M_H')
>>> M_O = ureal(15.9994,type_b.uniform(0.0003),label='M_O')
>>> M_K = ureal(39.0983,type_b.uniform(0.0001),label='M_K')

>>> M_KHP = result(8*M_C + 5*M_H + 4*M_O + M_K, label='M_KHP')

The influences on the volume term 𝑉HCl are similar to the 𝑉T1 and 𝑉T2. A 15 mL pipette was used with a stated
uncertainty tolerance of 0.02. The range of temperature variation in the laboratory is 4 ∘C.

>>> uV_HCl_cal = ureal(0,type_b.triangular(0.02),label='uV_HCl_cal')
>>> uV_HCl_temp = ureal(0,type_b.uniform(15 * 2.1E-4 * 4),label='uV_HCl_temp')

>>> V_HCl = result(15 + uV_HCl_cal + uV_HCl_temp, label='V_HCl')

The CITAC Guide introduces a further multiplicative term 𝑅 to represent repeatability error (𝑅 ≈ 1)

𝑐NaOH = 𝑅
1000 ·𝑚KHP · 𝑃KHP

𝑀KHP · 𝑉T
,

2 If the balance indications for the tare weighing and gross weighing were known they could have been used to define the values of these
uncertain numbers, however the CITAC Guide does not provide this raw data. Instead, the zero value used here represents the linearity error.

3 Functions from the type_b module are used here to scale the uncertainty parameters, as described in the CITAC Guide

78 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

Another uncertain number is defined to represent this

>>> R = ureal(1.0,0.001,label='R')

The uncertainty calculation

The calculation of 𝑐NaOH is now

>>> c_HCl = R * (1000 * m_KHP * P_KHP * V_T2)/(M_KHP * V_T1 * V_HCl)
>>> print(c_HCl)
0.10139(18)
>>> print(uncertainty(c_HCl))
0.0001843...

The contribution from different influences can be examined

>>> for cpt,u in rp.budget(c_HCl,[m_KHP,P_KHP,M_KHP,V_T1,V_T2,V_HCl,R]):
... print(" {}: {:G}".format(cpt,u))
...
R: 0.000101387
V_T2: 9.69953E-05
V_T1: 8.33653E-05
V_HCl: 7.39151E-05
m_KHP: 3.19376E-05
P_KHP: 2.9268E-05
M_KHP: 1.86931E-06

The results (which can be compared with Figure A3.6 in the Guide) show that repeatability is the dominant
component of uncertainty

The full uncertainty budget is obtained by

>>> for cpt,u in rp.budget(c_HCl):
... print(" {}: {:G}".format(cpt,u))
...
R: 0.000101387
V_T2_cal: 8.33938E-05
V_T1_cal: 6.66166E-05
uV_HCl_cal: 5.51882E-05
V_T1_temp: 5.01198E-05
V_T2_temp: 4.95334E-05
uV_HCl_temp: 4.91702E-05
P_KHP: 2.9268E-05
u_lin_tare: 2.25833E-05
u_lin_gross: 2.25833E-05
M_C: 1.83443E-06

This shows that calibration error in the volume titrated is also an important component of uncertainty .

Special aspects of this measurement

The CITAC Guide discusses some aspects of this measurement in section A3.6. Two in particular are: the uncer-
tainty associated with repeatability and bias in titration volumes.

A reduction in the uncertainty attributed to repeatability, by a factor of
√

3, has a small effect on the final combined
uncertainty. This may be seen in the GTC calculation by changing the definition of the uncertain number R

>>> R = ureal(1.0,0.001/math.sqrt(3),label='R')

>>> c_HCl = R * (1000 * m_KHP * P_KHP * V_T2)/(M_KHP * V_T1 * V_HCl)

(continues on next page)

3.1. Examples 79

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

>>> print('c_HCl={}'.format(c_HCl))
c_HCl=0.10139(16)

>>> for cpt,u in rp.budget(c_HCl,[m_KHP,P_KHP,M_KHP,V_T1,V_T2,V_HCl,R]):
... print(" {}: {:G}".format(cpt,u))
...
V_T2: 9.69953E-05
V_T1: 8.33653E-05
V_HCl: 7.39151E-05
R: 5.85359E-05
m_KHP: 3.19376E-05
P_KHP: 2.9268E-05
M_KHP: 1.86931E-06

The new results show that the combined uncertainty is not much changed when the repeatability is improved.

Another consideration is that a bias may be introduced by the use of phenolphthalein as an indicator. The excess
volume in this case is about 0.05 mL with a standard uncertainty of 0.03 mL.

We can adapt our calculations above by defining two elementary uncertain numbers to represent the bias. These
can be subtracted from the previous estimates4:

>>> V_T1_excess = ureal(0.05,0.03,label='V_T1_excess')
>>> V_T1 = V_T1 - V_T1_excess

>>> V_T2_excess = ureal(0.05,0.03,label='V_T2_excess')
>>> V_T2 = V_T2 - V_T2_excess

>>> print(uncertainty(V_T1))
0.033688...

>>> print(uncertainty(V_T2))
0.033210...

The uncertainties are roughly twice the previous values.

The concentration of HCl can then be re-calculated using the same measurement equation

>>> c_HCl = R * (1000 * m_KHP * P_KHP * V_T2)/(M_KHP * V_T1 * V_HCl)
>>> print(c_HCl)
0.10132(31)
>>> print(uncertainty(c_HCl))
0.0003096...

The combined uncertainty is now about twice as large (in mol/L).

Cadmium released from ceramic-ware (A5)

• The measurement

• The uncertainty contributions

– Dilution factor

– Leachate volume

– A calibration curve for cadmium concentration

4 The CITAC Guide does not provide different raw titration results for this case. However, the numerical values of V_T1 and V_T2 will
not be the same, because there are now two different parts to the experiment.

80 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

– Liquid surface area

– Temperature effect

– Time effect

– Acid concentration

• The uncertainty calculation

This section is based on a measurement described in Appendix 5 of the 3rd edition of the EURACHEM / CITAC
Guide1.

The CITAC Guide gives a careful discussion of the uncertainty analysis leading to particular numerical values.
The following shows only how the data processing could be preformed using GTC.

The measurement

The experiment determines the amount of cadmium released from ceramic ware.

The measurand can be expressed as

𝑟 =
𝑐0 · 𝑉L

𝑎v
· 𝑑 · 𝑓acid · 𝑓time · 𝑓temp ,

where

• 𝑟 is the mass of cadmium leached per unit area (mg dm−2),

• 𝑐0 cadmium content in the extraction solution (mg L−1),

• 𝑉L is the volume of leachate (L),

• 𝑑 is the dilution factor,

• 𝑎v is the surface area of the liquid (dm2).

• 𝑓acid is the influence of acid concentration.

• 𝑓time is the influence of the duration,

• 𝑓temp is the influence of temperature.

The uncertainty contributions

Section A5.4 of the CITAC Guide provides numerical estimates of these quantities that can be used to define
uncertain numbers for the calculation.

Dilution factor

In this example there was no dilution.

Leachate volume

Several factors contribute to the uncertainty of 𝑉L:

• 𝑉L−fill the relative accuracy with which the vessel can be filled

• 𝑉L−temp temperature variation affects the determined volume

• 𝑉L−read the accuracy with which the volume reading can be made

1 On-line: http://www.citac.cc/QUAM2012_P1.pdf

3.1. Examples 81

http://www.citac.cc/QUAM2012_P1.pdf

GUM Tree Calculator Documentation, Release 1.2.0

• 𝑉L−cal the accuracy with which the manufacturer can calibrate a 500 mL vessel

Uncertain numbers for each contribution can be defined and combined to obtain an uncertain number for the
volume. In this case, the volume of leachate is 332 mL.

>>> v_leachate = 332 # mL
>>> a_liquid = 2.1E-4 # liquid volume expansion per degree
>>> v_fill = ureal(0.995,tb.triangular(0.005),label='v_fill')
>>> v_temp = ureal(0,tb.uniform(v_leachate*a_liquid*2),label='v_temp')
>>> v_reading = ureal(1,tb.triangular(0.01),label='v_reading')
>>> v_cal = ureal(0,tb.triangular(2.5),label='v_cal')

Change units to liters now
>>> V_L = result(
... (v_leachate * v_fill * v_reading + v_temp + v_cal)/1000,
... label='V_L') # L
...
>>> print("V leachate: {}".format(V_L))
V leachate: 0.3303(18)

A calibration curve for cadmium concentration

The amount of leached cadmium is calculated using a calibration curve. A linear relationship is assumed between
observed absorbance and cadmium concentration.

𝐴𝑖 = 𝑐𝑖 ·𝐵1 + 𝐵0 + 𝐸𝑖 ,

where 𝐵1 and 𝐵0 are the slope and intercept, respectively, of the line, 𝐴𝑖 is the observed absorbance, 𝑐𝑖 is the
concentration of the 𝑖th calibration standard and 𝐸𝑖 is the unknown measurement error incurred during the 𝑖th

observation.

Three repeat observations are made for each of five calibration standards and the parameters of the calibration line
are estimated by ordinary least-squares regression.

The GTC calculation uses the line_fit() function

>>> x_data = [0.1, 0.1, 0.1, 0.3, 0.3, 0.3, 0.5, 0.5, 0.5, 0.7, 0.7, 0.7, 0.9, 0.9,
→˓ 0.9]
>>> y_data = [0.028, 0.029, 0.029, 0.084, 0.083, 0.081, 0.135,
... 0.131, 0.133, 0.180, 0.181, 0.183, 0.215, 0.230, 0.216]
...
>>> fit = ta.line_fit(x_data,y_data,label='regression')

>>> B_0 = fit.intercept
>>> B_1 = fit.slope

>>> print("Intercept: {}".format(B_0))
Intercept: 0.0087(29)
>>> print("Slope: {}".format(B_1))
Slope: 0.2410(50)

There is correlation between these uncertain numbers (the estimates are correlated)

>>> print(get_correlation(B_0, B_1))
-0.87038...

The object fit contains information about the regression that can be used to make predictions about cadmium
concentration from subsequent observations of absorbance. In this case, two further values of absorbance are used
to estimate the concentration 𝑐0.

Using the function x_from_y()we write (the label ‘absorbance’ will be attached to the mean of the observations
and identify this influence in the uncertainty budget below)

82 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

>>> c_0 = fit.x_from_y([0.0712,0.0716], x_label='absorbance',y_label='noise')
>>> print("absorbance: {}".format(c_0))
absorbance: 0.260(18)

Liquid surface area

There are two contributions to the uncertainty of 𝑎V:

• 𝑎V−dia uncertainty due to the diameter measurement

• 𝑎V−shape uncertainty due to imperfect shape

Uncertain numbers for each contribution can be combined to obtain an estimate of the surface area

>>> dia = ureal(2.70,0.01,label='dia')
>>> a_dia = math.pi*(dia/2)**2
>>> a_shape = ureal(1,0.05/1.96,label='a_shape')
>>> a_V = result(a_dia * a_shape, label='a_V')
>>> print("a_V: {}".format(a_V))
a_V: 5.73(15)

Temperature effect

The temperature factor is given as 𝑓temp = 1 ± 0.1. Assuming a uniform distribution we define

>>> f_temp = ureal(1,tb.uniform(0.1),label='f_temp')

Time effect

The time factor is given as 𝑓time = 1 ± 0.0015. Assuming a uniform distribution we define

>>> f_time = ureal(1,tb.uniform(0.0015),label='f_time')

Acid concentration

The acid concentration factor is given as 𝑓acid = 1± 0.0008. This is already in the form of a standard uncertainty
so we define

>>> f_acid = ureal(1,0.0008,label='f_acid')

The uncertainty calculation

To estimate 𝑟 we now evaluate

>>> r = c_0 * V_L / a_V * f_acid * f_time * f_temp
>>> print("r: {}".format(r))
r: 0.0150(14)

The contribution from the different influences can be examined

>>> for cpt,u in rp.budget(r,[c_0,V_L,a_V,f_acid,f_time,f_temp]):
... print(" {}: {:G}".format(cpt,u))
...

(continues on next page)

3.1. Examples 83

GUM Tree Calculator Documentation, Release 1.2.0

(continued from previous page)

absorbance: 0.00102956
f_temp: 0.00086663
a_V: 0.000398736
V_L: 8.28714E-05
f_time: 1.29994E-05
f_acid: 1.20084E-05

The results (which can be compared with Figure A5.8 in the Guide) show that the content of cadmium in the
extraction solution is the dominant component of uncertainty.

The full uncertainty budget can be obtained by writing

>>> for cpt,u in rp.budget(r,trim=0):
... print(" {}: {:G}".format(cpt,u))
...
noise: 0.000928623
f_temp: 0.00086663
a_regression: 0.000688685
a_shape: 0.00038292
b_regression: 0.000311899
dia: 0.000111189
v_reading: 6.128E-05
v_cal: 4.63764E-05
v_fill: 3.0794E-05
f_time: 1.29994E-05
f_acid: 1.20084E-05
v_temp: 3.65814E-06

This reveals that the additional observations of absorbance have contributed most to the uncertainty (so perhaps a
few more observations would help)

3.1.4 Arrays of uncertain numbers

Examples using UncertainArray

Example 1. Creating an UncertainArray

The following example illustrates how to create an UncertainArray and how to use GTC functions for cal-
culation.

Import the necessary GTC functions and modules

>>> from GTC import ureal, cos, type_a

Next, define the uncertain arrays

>>> voltages = la.uarray([ureal(4.937, 0.012), ureal(5.013, 0.008), ureal(4.986, 0.
→˓014)])
>>> currents = la.uarray([ureal(0.023, 0.003), ureal(0.019, 0.006), ureal(0.020, 0.
→˓004)])
>>> phases = la.uarray([ureal(1.0442, 2e-4), ureal(1.0438, 5e-4), ureal(1.0441, 3e-
→˓4)])

We can use the cos() function to calculate the AC resistances

>>> resistances = (voltages / currents) * cos(phases)
>>> resistances
uarray([ureal(107.88283143147648,14.07416562378944,inf),

ureal(132.69660967977737,41.90488273081293,inf),
ureal(125.3181626494936,25.06618583901181,inf)])

84 Chapter 3. Examples

GUM Tree Calculator Documentation, Release 1.2.0

Now, to calculate the average AC resistance we could use type_a.mean(), which evaluates the mean of the
uncertain number values

>>> type_a.mean(resistances)
121.96586792024915

However, that is a real number, not an uncertain number. We have discarded all information about the uncertainty
of each resistance!

A better calculation in this case uses function.mean(), which will propagate uncertainties

>>> fn.mean(resistances)
ureal(121.96586792024915,16.939155846751817,inf)

This obtains an uncertain number with a standard uncertainty of 16.939155846751817 that is the combined un-
certainty of the mean of AC resistance values. We could also calculate this as

>>> math.sqrt(resistances[0].u**2 + resistances[1].u**2 + resistances[2].u**2)/3.0
16.939155846751817

Note: A Type-A evaluation of the standard uncertainty of the mean of the three resistance values is a different
calculation

>>> type_a.standard_uncertainty(resistances)
7.356613978879885

The standard uncertainty evaluated here by type_a.standard_uncertainty() is a sample statistic cal-
culated from the values alone. On the other hand, the standard uncertainty obtained by function.mean() is
evaluated by propagating the input uncertainties through the calculation of the mean value. There is no reason to
expect these two different calculations to yield the same result.

Example 2. Creating a Structured UncertainArray

One can also make use of the structured arrays feature of numpy to access columns in the array by name instead
of by index.

Note: numpy arrays use a zero-based indexing scheme, so the first column corresponds to index 0

Suppose that we have the following list of data

>>> data = [[ureal(1, 1), ureal(2, 2), ureal(3, 3)],
... [ureal(4, 4), ureal(5, 5), ureal(6, 6)],
... [ureal(7, 7), ureal(8, 8), ureal(9, 9)]]

We can create an UncertainArray from this list

>>> ua = la.uarray(data)

When ua is created it is a view into data (i.e., no elements in data are copied)

>>> ua[0,0] is data[0][0]
True

However, if an element in ua is redefined to point to a new object then the corresponding element is data does
not change

3.1. Examples 85

https://docs.scipy.org/doc/numpy/user/basics.rec.html#structured-arrays
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

GUM Tree Calculator Documentation, Release 1.2.0

>>> ua[0,0] = ureal(99, 99)
>>> ua[0,0]
ureal(99.0,99.0,inf)
>>> data[0][0]
ureal(1.0,1.0,inf)
>>> ua[1,1] is data[1][1]
True

If we wanted to access the data in column 1 we would use the following

>>> ua[:,1]
uarray([ureal(2.0,2.0,inf), ureal(5.0,5.0,inf),

ureal(8.0,8.0,inf)])

Alternatively, we can assign a name to each column so that we can access columns by name rather than by an
index number (note that we must cast each row in data to be a tuple data type)

>>> ua = la.uarray([tuple(row) for row in data], names=['a', 'b', 'c'])

Since we chose column 1 to have the name 'b' we can now access column 1 by its name

>>> ua['b']
uarray([ureal(2.0,2.0,inf), ureal(5.0,5.0,inf),

ureal(8.0,8.0,inf)])

and then perform a calculation by using the names that were chosen

>>> ua['a'] * ua['b'] + ua['c']
uarray([ureal(5.0,4.123105625617661,inf),

ureal(26.0,28.91366458960192,inf),
ureal(65.0,79.7057087039567,inf)])

Example 3. Calibrating a Photodiode

Suppose that we have the task of calibrating the spectral response of a photodiode. We perform the following
steps to acquire the data and then perform the calculation to determine the spectral response of the photodiode
(PD) relative to a calibrated reference detector (REF). The experimental procedure is as follows:

1) Select a wavelength from the light source.

2) Move REF to be in the beam path of the light source.

3) Block the light and measure the background signal of REF.

4) Unblock the light and measure the signal of REF.

5) Move PD to be in the beam path of the light source.

6) Block the light and measure the background signal of PD.

7) Unblock the light and measure the signal of PD.

8) Repeat step (1).

10 readings were acquired in steps 3, 4, 6 and 7 and they were used determine the average and standard deviation
for each measurement. The standard deviation is shown in brackets in the table below. The uncertainty of the
wavelength is negligible.

86 Chapter 3. Examples

https://docs.python.org/3/library/stdtypes.html#tuple

GUM Tree Calculator Documentation, Release 1.2.0

Wavelength [nm] PD Signal [Volts] PD Background
[Volts]

REF Signal
[Volts]

REF Background
[Volts]

400 1.273(4) 0.0004(3) 3.721(2) 0.00002(2)
500 2.741(7) 0.0006(2) 5.825(4) 0.00004(3)
600 2.916(3) 0.0002(1) 6.015(3) 0.00003(1)
700 1.741(5) 0.0003(4) 4.813(4) 0.00005(4)
800 0.442(9) 0.0004(3) 1.421(2) 0.00003(1)

We can create a list from the information in the table. It is okay to mix built-in data types (e.g., int, float
or complex) with uncertain numbers. The degrees of freedom = 10 - 1 = 9.

>>> data = [
... (400., ureal(1.273, 4e-3, 9), ureal(4e-4, 3e-4, 9), ureal(3.721, 2e-3, 9),
→˓ureal(2e-5, 2e-5, 9)),
... (500., ureal(2.741, 7e-3, 9), ureal(6e-4, 2e-4, 9), ureal(5.825, 4e-3, 9),
→˓ureal(4e-5, 3e-5, 9)),
... (600., ureal(2.916, 3e-3, 9), ureal(2e-4, 1e-4, 9), ureal(6.015, 3e-3, 9),
→˓ureal(3e-5, 1e-5, 9)),
... (700., ureal(1.741, 5e-3, 9), ureal(3e-4, 4e-4, 9), ureal(4.813, 4e-3, 9),
→˓ureal(5e-5, 4e-5, 9)),
... (800., ureal(0.442, 9e-3, 9), ureal(4e-4, 3e-4, 9), ureal(1.421, 2e-3, 9),
→˓ureal(3e-5, 1e-5, 9))
...]

Next, we create a named UncertainArray from data and calculate the relative spectral response by using
the names that were specified

>>> ua = la.uarray(data, names=['nm', 'pd-sig', 'pd-bg', 'ref-sig', 'ref-bg'])
>>> res = (ua['pd-sig'] - ua['pd-bg']) / (ua['ref-sig'] - ua['ref-bg'])
>>> res
uarray([ureal(0.342006675660713,0.0010935674325269068,9.630065079733788),

ureal(0.4704581662363347,0.0012448685947602906,10.30987538377716),
ureal(0.4847571974590064,0.0005545173836499742,13.031921586772652),
ureal(0.36167007760313324,0.0010846673083513545,10.620461706054874),
ureal(0.31077362646642787,0.006352297390618683,9.105944114389143)])

Since ua and res are numpy arrays we can use numpy syntax to filter information. To select the data where the
PD signal is > 2 volts, we can use

>>> gt2 = ua[ua['pd-sig'] > 2]
>>> gt2
uarray([(500., ureal(2.741,0.007,9.0), ureal(0.0006,0.0002,9.0), ureal(5.825,0.004,
→˓9.0), ureal(4e-05,3e-05,9.0)),

(600., ureal(2.916,0.003,9.0), ureal(0.0002,0.0001,9.0), ureal(6.015,0.003,
→˓9.0), ureal(3e-05,1e-05,9.0))],

dtype=[('nm', '<f8'), ('pd-sig', 'O'), ('pd-bg', 'O'), ('ref-sig', 'O'), (
→˓'ref-bg', 'O')])

We can also use the name feature on gt2 to then get the REF signal for the filtered data

>>> gt2['ref-sig']
uarray([ureal(5.825,0.004,9.0), ureal(6.015,0.003,9.0)])

To select the relative spectral response where the wavelengths are < 700 nm

>>> res[ua['nm'] < 700]
uarray([ureal(0.342006675660713,0.0010935674325269068,9.630065079733788),

ureal(0.4704581662363347,0.0012448685947602906,10.30987538377716),
ureal(0.4847571974590064,0.0005545173836499742,13.031921586772652)])

3.1. Examples 87

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#complex

GUM Tree Calculator Documentation, Release 1.2.0

This is a very simplified analysis. In practise one should use a Measurement Model.

Example 4. N-Dimensional UncertainArrays

The multi-dimensional aspect of numpy arrays is also supported.

Suppose that we want to multiply two matrices that are composed of uncertain numbers

𝐶 = 𝐴𝐵

The 𝐴 and 𝐵 matrices are defined as

>>> A = la.uarray([[ureal(3.6, 0.1), ureal(1.3, 0.2), ureal(-2.5, 0.4)],
... [ureal(-0.2, 0.5), ureal(3.1, 0.05), ureal(4.4, 0.1)],
... [ureal(8.3, 1.5), ureal(4.2, 0.6), ureal(3.3, 0.9)]])
>>> B = la.uarray([ureal(1.8, 0.3), ureal(-3.5, 0.9), ureal(0.8, 0.03)])

Using the @ operator for matrix multiplication, which was introduced in Python 3.5 (PEP 465), we can determine
𝐶

>>> C = A @ B
>>> C
uarray([ureal(-0.0699999999999994,1.7792484368406793,inf),

ureal(-7.689999999999999,2.9414535522424963,inf),
ureal(2.8800000000000003,5.719851484085929,inf)])

Alternatively, we can use matmul() from the linear_algebra module

>>> C = la.matmul(A, B)
>>> C
uarray([ureal(-0.0699999999999994,1.7792484368406793,inf),

ureal(-7.689999999999999,2.9414535522424963,inf),
ureal(2.8800000000000003,5.719851484085929,inf)])

88 Chapter 3. Examples

https://www.python.org/dev/peps/pep-0465

CHAPTER 4

Other topics

4.1 Some comments about GTC fitting functions

• Overview

• The type_a module regression functions

– Ordinary least-squares

– Weighted least-squares

– Relative weighted least-squares

– Weighted total least-squares

• The type_b module regression functions

– Ordinary least-squares

– Weighted least-squares

– Weighted total least-squares

4.1.1 Overview

GTC has straight-line regression functions in both the type_a and type_b modules.

Functions in type_a implement a variety of least-squares straight line fitting algorithms that provide results in
the form of uncertain numbers. When used, the input data (the sequences x and y) are treated as pure numbers (if
sequences of uncertain numbers are provided, only the values are used in calculations).

Functions defined in type_b, on the other hand, expect input sequences of uncertain numbers. These functions
estimate the slope and intercept of a line by applying the same type of regression algorithms, but uncertainties are
propagated through the equations and the residuals are ignored.

The distinction between functions that evaluate the uncertainty of estimates from residuals (type_a) and func-
tions that evaluate uncertainty using uncertain numbers (type_b) is useful. There will be circumstances that
require the use of a function in type_b, such as when systematic errors contribute to uncertainty but cannot be
estimated properly using conventional regression. Without the methods available in type_b, such components of

89

GUM Tree Calculator Documentation, Release 1.2.0

uncertainty could not be propagated. On the other hand, functions in type_a implement conventional regression
methods.

Discretion will be needed if it is believed that variability in a sample of data is due, in part, to errors not fully
accounted for in an uncertain-number description of the data. The question is then: just how much of that vari-
ability can be explained by components of uncertainty already defined as uncertain number influences? If the
answer is ‘very little’ then it will be appropriate to use a function from type_a to estimate the additional con-
tribution to uncertainty from the sample variability. At the same time, components of uncertainty associated with
the uncertain-number data should be propagated using a function from type_b that performs the same type of
regression. The two result values will be identical (the estimates of the slope and intercept will be the same) but
the uncertainties will differ. type_a.merge() can then be used to merge the results.

Clearly, this approach could potentially over-estimate the effect of some influences and inflate the combined
uncertainty of results. It is a matter of judgement as to whether to merge type-A and type-B results in a particular
procedure.

4.1.2 The type_a module regression functions

Ordinary least-squares

type_a.line_fit() implements a conventional ordinary least-squares straight-line regression. The residuals
are used to estimate the underlying variance of the y data. The resulting uncertain numbers for the slope and
intercept have finite degrees of freedom and are correlated.

Weighted least-squares

type_a.line_fit_wls() implements a so-called weighted least-squares straight-line regression. This as-
sumes that the uncertainties provided with input data are known exactly (i.e., with infinite degrees of freedom).
The uncertainties in the slope and intercept are calculated without considering the residuals.

This approach to linear regression is described in two well-known references12 , but it may not be what many
statisticians associate with the term ‘weighted least-squares’.

Relative weighted least-squares

type_a.line_fit_rwls() implements a form of weighted least-squares straight-line regression that we
refer to here as ‘relative weighted least-squares’. (Statisticians may regard this as conventional weighted least-
squares.)

type_a.line_fit_rwls() accepts a sequence of scale factors associated with the observations y, which are
used as weighting factors. For an observation 𝑦, it is assumed that the uncertainty 𝑢(𝑦) = 𝜎𝑠𝑦 , where 𝜎 is an
unknown factor common to all the y data and 𝑠𝑦 is the weight factor provided.

The procedure estimates 𝜎 from the residuals, so the uncertain numbers returned for the slope and intercept have
finite degrees of freedom.

Note, because the scale factors describe the relative weighting of different observations, the ordinary least-squares
function type_a.line_fit() and type_a.line_fit_rwls() would return equivalent results if all y
observations are given the same weighting.

Weighted total least-squares

type_a.line_fit_wtls() implements a form of least-squares straight-line regression that takes account of
errors in both the x and y data3.

1 Philip Bevington and D. Keith Robinson, Data Reduction and Error Analysis for the Physical Sciences
2 William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical Recipes: The Art of Scientific Computing
3 M Krystek and M Anton, Meas. Sci. Technol. 22 (2011) 035101 (9pp)

90 Chapter 4. Other topics

GUM Tree Calculator Documentation, Release 1.2.0

As in the case of type_a.line_fit_wls(), the uncertainties provided for the x and y data are assumed exact.
When calculating the uncertainty in the slope and intercept, the residuals are ignored and the uncertain numbers
returned have infinite degrees of freedom.

4.1.3 The type_b module regression functions

Ordinary least-squares

type_b.line_fit() implements the conventional ordinary least-squares straight-line regression to obtain
estimates of the slope and intercept of a line through the data. The y data is a sequence of uncertain numbers. The
uncertainty of the slope and intercept is found by propagating uncertainty from the input data; the residuals are
ignored.

Weighted least-squares

type_b.line_fit_wls() implements a weighted least-squares straight-line regression to estimate the slope
and intercept of a line through the data. The y data is a sequence of uncertain numbers. An explicit sequence
of uncertainties for the data points may also be provided. If so, these uncertainties are used as weights in the
algorithm when estimating the slope and intercept. Otherwise, the uncertainty of each uncertain number for y is
used. In either case, uncertainty in the estimates of slope and intercept is obtained by propagating the uncertainty
associated with the input data through the estimate equations (the residuals are ignored).

Note: type_a.line_fit_wls() and type_b.line_fit_wls() yield the same results when a se-
quence of elementary uncertain numbers is defined for y and used with type_a.line_fit_wls() and the
values and uncertainties of that sequence are used with type_a.line_fit_wls().

Note: There is no need for a ‘relative weighted least-squares’ function in the type_b module. Using a sequence
of u_y values with type_b.line_fit_wls() will perform this calculation.

Weighted total least-squares

type_b.line_fit_wtls() implements a form of least-squares straight-line regression that takes account of
errors in both the x and y data.3.

As with type_b.line_fit_wls(), sequences of uncertainties for the x and y data may be supplied in addition
to sequences of the x and y data. When the optional uncertainty sequences are provided, estimates of the slope
and intercept use those uncertainties as weights in the regression process. Otherwise, the input data uncertainties
are used as weights in the regression process. In either case, uncertainty in the estimates of slope and intercept is
calculated by propagating uncertainty from the input data through the regression equations (residuals are ignored).

4.1. Some comments about GTC fitting functions 91

GUM Tree Calculator Documentation, Release 1.2.0

92 Chapter 4. Other topics

CHAPTER 5

Release Notes

5.1 License

MIT License

Copyright (c) 2019 Measurement Standards Laboratory of New Zealand

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

5.2 Developers

• Blair Hall

• Joseph Borbely

93

GUM Tree Calculator Documentation, Release 1.2.0

5.3 Release Notes

5.3.1 Version 1.2.0 (2019.10.16)

• Functions to perform straight-line regressions are included in modules type_a and type_b.

• The regression functions in type_a act on sequences of numerical data in the conventional sense (i.e.,
only the values of data are used; if the data include uncertain number objects, the associated uncertainty
is ignored). The residuals are evaluated and may contribute to the uncertainty of the results obtained,
depending on the regression method.

• The regression functions in type_b act on sequences of uncertain-numbers, propagating uncertainty into
the results obtained. In most cases, the regression functions in this module are paired with a function of
the same name in type_a. For example, type_a.line_fit() and type_b.line_fit() both
perform an ordinary least-squares regression. The uncertain-numbers for the intercept and slope obtained
from type_a.line_fit() are correlated and have uncertainties that depend on the fitting residuals.
On the other hand, the intercept and slope obtained by type_b.line_fit() depend on the uncertain-
number data supplied, and does not take account of the residuals.

• The function type_a.merge() may be used to combine results obtained from type-A and type-B regres-
sions performed on the same data.

• A number of example calculations are included from Appendix H of the Guide to the expression of uncer-
tainty in measurement (GUM).

• A number of example calculations are included from the 3rd Edition (2012) of the EURACHEM/CITAC
Guide: Quantifying Uncertainty in Analytical Measurement (CG4).

• There are several examples of applying GTC to linear calibration problems, including the use of regression
functions in type_a and type_b.

5.3.2 Version 1.1.0 (2019.05.30)

• Mathematical functions in the core module (sin, sqrt, etc) can be applied to Python numbers as well as
uncertain numbers (previously these functions raised an exception when applied to Python numbers).

• There is a new array-like class to hold collections of uncertain numbers. UncertainArray is based on
numpy.ndarray, which provides excellent support for manipulating stored data. Standard mathematical
operations in the core module can be applied to UncertainArray objects.

• A function reporting.sensitivity() calculates partial derivatives (sensitivity coefficients).

5.3.3 Version 1.0.0 (2018.11.16)

The initial release of the Python code version of the GUM Tree Calculator.

The source code was derived from the stand-alone GUM Tree Calculator version 0.9.11, which is
available from the MSL web site . The new version has made some significant changes to the data
structures used, with accompanying changes to the underlying algorithms.

The application programmer interface in GTC 1.0.0 remains very close to that provided in GTC
0.9.11, although not all functions in GTC 0.9.11 are available yet. It is our intention to provide the
remainder in forthcoming releases.

The most significant change has been to the method of storing uncertain numbers. The archive
module in GTC 0.9.11 was replaced in GTC 1.0.0 by the persistence module. So, archives
created using GTC 0.9.11 are not interchangeable with GTC 1.0.0.

94 Chapter 5. Release Notes

https://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html?csnumber=50461
http://www.citac.cc/QUAM2012_P1.pdf
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://www.measurement.govt.nz/resources

GUM Tree Calculator Documentation, Release 1.2.0

5.4 Indices and tables

• genindex

• modindex

5.4. Indices and tables 95

GUM Tree Calculator Documentation, Release 1.2.0

96 Chapter 5. Release Notes

Python Module Index

c
core, 7

f
function, 38

l
linear_algebra, 47

p
persistence, 44

r
reporting, 39

t
type_a, 19
type_b, 31

97

GUM Tree Calculator Documentation, Release 1.2.0

98 Python Module Index

Index

A
a (InterceptSlope attribute), 47
a_b (LineFitOLS attribute), 27, 35
a_b (LineFitRWLS attribute), 28
a_b (LineFitWLS attribute), 29, 35
a_b (LineFitWTLS attribute), 30, 36
acos() (in module core), 13
acosh() (in module core), 14
add() (Archive method), 44
Archive (class in persistence), 44
arcsine() (in module type_b), 37
asin() (in module core), 13
asinh() (in module core), 14
atan() (in module core), 13
atan2() (in module core), 13
atanh() (in module core), 15

B
b (InterceptSlope attribute), 47
budget() (in module reporting), 40

C
complex_to_seq() (in module function), 38
component() (in module core), 11
ComponentOfUncertainty (class in

named_tuples), 46
conjugate() (UncertainComplex method), 18
conjugate() (UncertainReal method), 16
constant() (in module core), 9
core (module), 7
CorrelationMatrix (class in named_tuples), 46
cos() (in module core), 13
cosh() (in module core), 14
CovarianceMatrix (class in named_tuples), 46
cv (VarianceAndDof attribute), 45

D
det() (in module linear_algebra), 50
df (UncertainComplex attribute), 18
df (UncertainReal attribute), 16
df (VarianceAndDof attribute), 45
distribution (in module type_b), 38
dof() (in module core), 10

dot() (in module linear_algebra), 49
dump() (in module persistence), 45
dumps() (in module persistence), 45

E
empty() (in module linear_algebra), 51
estimate() (in module type_a), 20
estimate_digitized() (in module type_a), 21
exp() (in module core), 14
extract() (Archive method), 44

F
full() (in module linear_algebra), 51
function (module), 38

G
get_correlation() (in module core), 12
get_covariance() (in module core), 11

I
identity() (in module linear_algebra), 50
ii (ComponentOfUncertainty attribute), 46
ii (CorrelationMatrix attribute), 47
ii (CovarianceMatrix attribute), 46
ii (VarianceCovariance attribute), 46
imag (StandardDeviation attribute), 46
imag (StandardUncertainty attribute), 46
imag (UncertainComplex attribute), 18
imag (UncertainReal attribute), 16
Influence (class in named_tuples), 46
intercept (LineFitOLS attribute), 27, 35
intercept (LineFitRWLS attribute), 28
intercept (LineFitWLS attribute), 29, 35
intercept (LineFitWTLS attribute), 30, 36
InterceptSlope (class in named_tuples), 47
inv() (in module linear_algebra), 50
ir (ComponentOfUncertainty attribute), 46
ir (CorrelationMatrix attribute), 47
ir (CovarianceMatrix attribute), 46
ir (VarianceCovariance attribute), 46
is_ucomplex() (in module reporting), 43
is_ureal() (in module reporting), 43
items() (Archive method), 44

99

GUM Tree Calculator Documentation, Release 1.2.0

iteritems() (Archive method), 45
iterkeys() (Archive method), 45
itervalues() (Archive method), 45

K
k2_factor_sq() (in module reporting), 41
k2_to_dof() (in module reporting), 41
k_factor() (in module reporting), 41
k_to_dof() (in module reporting), 41
keys() (Archive method), 45

L
label (Influence attribute), 46
label (UncertainComplex attribute), 18
label (UncertainReal attribute), 16
label() (in module core), 11
line_fit() (in module type_a), 25
line_fit() (in module type_b), 32
line_fit_rwls() (in module type_a), 26
line_fit_wls() (in module type_a), 25
line_fit_wls() (in module type_b), 33
line_fit_wtls() (in module type_a), 26
line_fit_wtls() (in module type_b), 34
linear_algebra (module), 47
LineFitOLS (class in type_a), 27
LineFitOLS (class in type_b), 35
LineFitRWLS (class in type_a), 28
LineFitWLS (class in type_a), 29
LineFitWLS (class in type_b), 35
LineFitWTLS (class in type_a), 30
LineFitWTLS (class in type_b), 36
load() (in module persistence), 45
loads() (in module persistence), 45
log() (in module core), 14
log10() (in module core), 14

M
mag_squared() (in module core), 15
magnitude() (in module core), 15
matmul() (in module linear_algebra), 50
mean() (in module function), 39
mean() (in module type_a), 23
merge() (in module type_a), 30
multi_estimate_complex() (in module

type_a), 22
multi_estimate_real() (in module type_a), 21
multiple_ucomplex() (in module core), 8
multiple_ureal() (in module core), 8

N
N (LineFitOLS attribute), 27, 35
N (LineFitRWLS attribute), 28
N (LineFitWLS attribute), 29, 35
N (LineFitWTLS attribute), 30, 36

O
ones() (in module linear_algebra), 51

P
persistence (module), 44
phase() (in module core), 15
pow() (in module core), 14
Python Enhancement Proposals

PEP 465, 88

R
r (UncertainComplex attribute), 18
real (StandardDeviation attribute), 46
real (StandardUncertainty attribute), 46
real (UncertainComplex attribute), 18
real (UncertainReal attribute), 16
reporting (module), 39
result() (in module core), 12
ri (ComponentOfUncertainty attribute), 46
ri (CorrelationMatrix attribute), 47
ri (CovarianceMatrix attribute), 46
ri (VarianceCovariance attribute), 46
rr (ComponentOfUncertainty attribute), 46
rr (CorrelationMatrix attribute), 47
rr (CovarianceMatrix attribute), 46
rr (VarianceCovariance attribute), 45

S
sensitivity() (in module reporting), 42
seq_to_complex() (in module function), 38
set_correlation() (in module core), 12
sin() (in module core), 13
sinh() (in module core), 14
slope (LineFitOLS attribute), 27, 35
slope (LineFitRWLS attribute), 28
slope (LineFitWLS attribute), 29, 35
slope (LineFitWTLS attribute), 30, 36
solve() (in module linear_algebra), 50
sqrt() (in module core), 14
ssr (LineFitOLS attribute), 27, 35
ssr (LineFitRWLS attribute), 28
ssr (LineFitWLS attribute), 29, 36
ssr (LineFitWTLS attribute), 30, 36
standard_deviation() (in module type_a), 23
standard_uncertainty() (in module type_a),

24
StandardDeviation (class in named_tuples), 46
StandardUncertainty (class in named_tuples),

46

T
tan() (in module core), 13
tanh() (in module core), 14
transpose() (in module linear_algebra), 51
triangular() (in module type_b), 36
type_a (module), 19
type_b (module), 31

U
u (Influence attribute), 46
u (UncertainComplex attribute), 19

100 Index

GUM Tree Calculator Documentation, Release 1.2.0

u (UncertainReal attribute), 16
u_bar() (in module reporting), 43
u_component() (in module reporting), 42
u_shaped() (in module type_b), 37
uarray() (in module linear_algebra), 49
ucomplex() (in module core), 9
UncertainArray (in module uncertain_array), 51
UncertainComplex (class in lib), 18
UncertainReal (class in lib), 16
uncertainty() (in module core), 10
uniform() (in module type_b), 36
uniform_disk() (in module type_b), 37
uniform_ring() (in module type_b), 37
unknown_phase_product() (in module type_b),

37
ureal() (in module core), 7

V
v (UncertainComplex attribute), 19
v (UncertainReal attribute), 17
v_bar() (in module reporting), 43
value() (in module core), 9
values() (Archive method), 45
variance() (in module core), 10
variance_covariance_complex() (in module

type_a), 24
VarianceAndDof (class in named_tuples), 45
VarianceCovariance (class in named_tuples), 45

X
x (UncertainComplex attribute), 19
x (UncertainReal attribute), 17
x_from_y() (LineFitOLS method), 27, 35
x_from_y() (LineFitRWLS method), 29
x_from_y() (LineFitWLS method), 29, 36

Y
y_from_x() (LineFitOLS method), 28, 35
y_from_x() (LineFitRWLS method), 29
y_from_x() (LineFitWLS method), 30, 36

Z
zeros() (in module linear_algebra), 51

Index 101

	Introduction
	GTC Modules
	Examples
	Other topics
	Release Notes
	Python Module Index
	Index

